National Model
EMS Clinical Guidelines

Abstract

These guidelines will be maintained by NASEMSO to facilitate the creation of state and local EMS system clinical guidelines, protocols or operating procedures. System medical directors and other leaders are invited to harvest content as will be useful. These guidelines are either evidence-based or consensus-based and have been formatted for use by field EMS professionals.

NASEMSO Medical Directors Council

All Rights Reserved V.11-14 www.nasemso.org
Contents

Introduction .. 5
Purpose and Notes ... 6
Target Audience ... 6
Acknowledgements ... 7
Universal Care .. 8
Universal Care Guideline ... 8
Functional Needs ... 14
Patient Refusals ... 18
Cardiovascular ... 20
Adult and Pediatric Syncope and Presyncope .. 20
Chest Pain/Acute Coronary Syndrome (ACS)/ST-segment Elevation Myocardial Infarction (STEMI) ... 24
Bradycardia ... 27
Tachycardia with a Pulse ... 31
Suspected Stroke / Transient Ischemic Attack ... 36
General Medical ... 39
Abuse and Maltreatment ... 39
Agitated or Violent Patient/Behavioral Emergency ... 43
Anaphylaxis and Allergic Reaction .. 49
Altered Mental Status ... 54
Hypoglycemia/Hyperglycemia .. 57
Pain Management ... 61
Seizures .. 67
Shock .. 72
Resuscitation ... 78
Cardiac Arrest (VF/VT/Asystole/PEA) ... 78
Adult Post-ROSC (Return of Spontaneous Circulation) Care ... 85

All Rights Reserved V.11-14
Determination of Death / Withholding Resuscitative Efforts ... 89
Do Not Resuscitate Status/Advanced Directives/Health Care Power of Attorney (POA) Status 92
Pediatric Specific Guidelines .. 99
Apparent Life Threatening Event (ALTE) .. 99
Pediatric Respiratory Distress (Bronchiolitis) ... 103
Pediatric Respiratory Distress (Croup) ... 108
Neonatal Resuscitation ... 113
GI/GU/Gyn ... 117
Childbirth ... 117
Nausea/Vomiting .. 120
Obstetrical/Gynecological Conditions ... 122
Respiratory ... 124
Airway Management ... 124
Bronchospasm (due to Asthma and Obstructive Lung Disease) ... 133
Pulmonary Edema ... 141
Trauma .. 145
General Trauma Management ... 145
Blast Injuries .. 151
Burns ... 154
Extremity Trauma / External Hemorrhage Management .. 157
Facial Trauma ... 160
Head Injury .. 163
Spinal Care ... 168
Toxins and Environmental ... 175
Poisoning/Overdose Universal Care .. 175
Acetylcholinesterase Inhibitors (Carbamates, Nerve Agents, Organophosphates) Exposure 180
Radiation Exposure ... 189
Topical Chemical Burn ... 193
Stimulant Poisoning/Overdose ... 197
Cyanide Exposure .. 200
Beta Blocker Poisoning/Overdose ... 204

All Rights Reserved V.11-14
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bites and Envenomation</td>
<td>207</td>
</tr>
<tr>
<td>Calcium Channel Blocker Poisoning/Overdose</td>
<td>210</td>
</tr>
<tr>
<td>Carbon Monoxide/Smoke Inhalation</td>
<td>213</td>
</tr>
<tr>
<td>Opioid Poisoning/Overdose</td>
<td>216</td>
</tr>
<tr>
<td>Hyperthermia/Heat Exposure</td>
<td>219</td>
</tr>
<tr>
<td>Hypothermia/Cold Exposure</td>
<td>223</td>
</tr>
<tr>
<td>Drowning</td>
<td>229</td>
</tr>
<tr>
<td>SCUBA Injury/Accidents</td>
<td>232</td>
</tr>
<tr>
<td>Altitude Illness</td>
<td>235</td>
</tr>
<tr>
<td>Conducted Electrical Weapon (e.g. TASER®)</td>
<td>238</td>
</tr>
<tr>
<td>Electrical Injuries</td>
<td>241</td>
</tr>
<tr>
<td>Lightning/Lightning Strike Injury</td>
<td>245</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>251</td>
</tr>
<tr>
<td>I. Author, Reviewer, Federal Partner and Staff Information</td>
<td>251</td>
</tr>
<tr>
<td>II. Public Review Comment Contributors</td>
<td>255</td>
</tr>
<tr>
<td>III. Medications</td>
<td>257</td>
</tr>
<tr>
<td>IV. Approved Abbreviations</td>
<td>276</td>
</tr>
<tr>
<td>V. Burn and Burn Fluid Charts</td>
<td>279</td>
</tr>
<tr>
<td>VI. Neurologic Status Assessment</td>
<td>285</td>
</tr>
<tr>
<td>VII. Normal Vital Signs</td>
<td>286</td>
</tr>
<tr>
<td>VIII. Evidence-based Guidelines - Grade Methodology</td>
<td>287</td>
</tr>
</tbody>
</table>
Introduction

The Future of Emergency Care: Emergency Medical Services at the Crossroads, an Institute of Medicine report published in 2007, states “NHTSA, in partnership with professional organizations, should convene a panel of individuals with multidisciplinary expertise to develop evidence-based model prehospital care protocols for the treatment, triage, and transport of patients.” The National Highway Transportation Safety Administration, Office of EMS (NHTSA OEMS) has embraced this recommendation with the development of the Evidence-Based Guideline Project.

The National Association of State EMS Officials (NASEMSO) recognizes the need for national EMS clinical guidelines to help state EMS systems ensure a more standardized approach to the practice of patient care now, and as experience dictates adoption of future practices. Model EMS clinical guidelines promote uniformity in prehospital care which, in turn, promotes more consistently skilled practice as EMS providers move across healthcare systems. They also provide a standard to EMS Medical Directors upon which to base practice. Supported by grant funding from NHTSA OEMS and the Health Resources and Services Administration (HRSA), NASEMSO authorized its Medical Directors Council to partner with national stakeholder organizations with expertise in EMS medical direction and subject matter experts to create a unified set of patient care guidelines. For the aspects of clinical care where evidence-based guidelines derived in accordance with the national evidence-based guideline model process were not available, consensus-based clinical guidelines were developed utilizing currently available research.

The NASEMSO Model EMS Clinical Guidelines are not mandatory nor are they meant to be all-inclusive or to determine local scope of practice. The focus of these guidelines is solely patient-centric. As such, they are designed to provide a resource to clinical practice, maximize patient care, safety, and outcomes regardless of the existing resources and capabilities within an EMS system. They are a set of clinical guidelines that can be used as is or adapted for use on a state, regional or local level to enhance patient care and benchmark performance of EMS practice. Emergency care and EMS delivery is, by nature, inherently dynamic. NASEMSO supports the evolution of the model EMS clinical guidelines as new EMS research and evidence-based patient care measures emerge in the future.

Carol Cunningham, M.D. Richard Kamin, M.D.
Co-Principal Investigator Co-Principal Investigator
Purpose and Notes

These guidelines are intended to help state EMS systems ensure a more standardized approach to the practice of patient care, and to encompass evidence-based guidelines as they are developed.

The long-term goal is to develop a full range of evidence-based prehospital care clinical guidelines. However, until there is a sufficient body of evidence to fully support this goal, there is a need for this interim expert, consensus-based step.

The National Model EMS Clinical Guidelines can fill a significant gap in uniform clinical guidance for EMS patient care, while also providing input to the evidence-based guideline (EBG) development process.

These guidelines will be maintained by the Medical Director Council of the National Association of State EMS Officials (NASEMSO) and will be reviewed and updated periodically. As EBG material is developed, it will be substituted for the consensus-based guidelines now comprising the majority of the content of this document. In the interim, additional consensus-based guidelines will also be added as the need is identified. For guidelines to be considered for inclusion, they must be presented in the format followed by all guidelines in the document.

Universal Care and **Poisoning/Overdose Universal Care** guidelines are included to reduce the need for extensive reiteration of basic assessment and other considerations in every guideline.

The appendices contain material such as neurologic status assessment and burn assessment tools to which many guidelines refer to increase consistency in internal standardization and to reduce duplication.

While some specific guidelines have been included for pediatric patients, considerations of patient age and size (pediatric, geriatric and bariatric) have been interwoven in the guidelines throughout the document.

Where IV access and drug routing is specified, it is intended to include IO access and drug routing when IV access and drug routing is not possible.

Generic medication names are utilized throughout the guidelines. A complete list of these, along with respective brand names, may be found in Appendix III “Medications”.

NEMSIS - Accurate and quality data collection is crucial to the advancement of EMS and a critical element of EMS research. The National EMS Information System (NEMSIS) has the unique ability to unify EMS data on a national scope to fulfill this need. Each guideline, therefore, is also listed by the closest NEMSIS Version 3 Label and Code corresponding to it, listed in parentheses below the guideline name.

Target Audience

While this material is intended to be integrated into an EMS system’s operational guidance materials by its medical director and other leaders, it is written with the intention that it will be consumed by field EMS practitioners.
To the degree possible, it has been assembled in a format useful for guidance and quick reference so that leaders may adopt it in whole or in part, harvesting and integrating as they deem appropriate to the format of their guideline, protocol, or procedure materials.

Acknowledgements
The authors of this document are NASEMSO Medical Director Council members partnered with representatives of seven EMS medical director stakeholder organizations. The stakeholder organizations are the American Academy of Emergency Medicine (AAEM), the American Academy of Pediatrics (AAP), the American College of Emergency Physicians (ACEP), the American College of Osteopathic Emergency Physicians (ACOEP), the American College of Surgeons Committee on Trauma (ACS-COT), the Air Medical Physician Association (AMPA), and the National Association of EMS Physicians (NAEMSP).
Universal Care

Universal Care Guideline

(9914075 – Universal Patient Care/Initial Patient Contact)

Patient Care Goals
Facilitate appropriate initial assessment and management of any EMS patient and link to appropriate specific guidelines as dictated by the findings within the universal care guideline

Patient Presentation
Inclusion Criteria
All patient encounters with and care delivery by EMS personnel

Exclusion Criteria
None

Patient Management
Assessment
1. Assess scene safety: evaluate for hazards to EMS personnel, patient, bystanders
 a. Determine number of patients
 b. Determine mechanism of injury
 c. Request additional resources if needed. Weigh the benefits of waiting for additional resources against rapid transport to definitive care
 d. Consider declaration of mass casualty incident if needed
2. Use appropriate personal protective equipment
3. Consider cervical spine stabilization if trauma
4. Primary Survey (Airway, Breathing, Circulation is cited below. There are specific circumstances where Circulation, Airway, Breathing may be recommended by direct medical oversight)
 a. Airway: assess for patency and open the airway as indicated
 i. Patient is unable to maintain airway patency—open airway
 1. Head tilt chin lift
 2. Jaw thrust
 3. Suction
 4. Consider use of the appropriate airway management adjuncts and devices: oral airway, nasal airway, blind insertion or supraglottic airway device, laryngeal mask airway, endotracheal tube
 ii. Obstructed airway: go to Prehospital Airway Management/Confirmation/Obstruction/Failed Airway guideline
 b. Breathing:
 i. Evaluate rate, breath sounds, accessory muscle use, retractions, patient positioning
 ii. Administer oxygen as appropriate with a goal of $\geq 94\%$ oxygen saturation for most acutely ill patients

All Rights Reserved V.11-14
iii. Apnea (not breathing): go to Prehospital Airway Management/Confirmation/Obstruction/Failed Airway guideline

c. Circulation:
 i. Assess pulse
 1. If none: go to Cardiac Arrest (VF/VT/Asystole/PEA) guideline
 2. Assess rate and quality of carotid and radial pulses
 ii. Evaluate perfusion by assessing skin color and temperature
 1. Evaluate capillary refill
 2. Control any major external bleeding. See also Extremity Trauma/External Hemorrhage Management guideline

d. Disability
 i. Evaluate patient responsiveness: AVPU scale (Alert, Verbal, Pain, Unresponsive; see 6. Obtain baseline vital signs a., below)
 ii. Evaluate gross motor and sensory function in all extremities
 iii. Evaluate blood glucose in patients with altered mental status
 iv. If acute stroke suspected, go to Suspected Stroke/Transient Ischemic Attack guideline

e. Expose patient as appropriate to complaint
 i. Be considerate of patient modesty
 ii. Keep patient warm

5. Secondary Survey
The performance of the secondary survey should not delay transport in critical patients. See also secondary survey specific to individual complaints in other protocols. Secondary surveys should be tailored to patient presentation and chief complaint. The following are suggested considerations for secondary survey assessment:

 a. Head:
 i. Pupils
 ii. Naso-oropharynx
 iii. Skull and scalp

 b. Neck
 i. Jugular venous distension
 ii. Tracheal position

 c. Chest
 i. Retractions
 ii. Breath sounds
 iii. Chest wall deformity

 d. Abdomen/Back
 i. Flank/abdominal tenderness or bruising
 ii. Abdominal distension

 e. Extremities
 i. Edema
 ii. Pulses
 iii. Deformity

 f. Neurologic
 i. Mental status/orientation
 ii. Motor/sensory
6. Obtain baseline vital signs
 a. An initial full set of vital signs is required: pulse, blood pressure, respiratory rate, neurologic status assessment. Neurologic status assessment (see Appendix VI) involves establishing a baseline and then trending any change in patient neurologic status. Glasgow Coma Score (GCS) is frequently used, but there are often errors in applying and calculating this score. With this in consideration, Glasgow Coma Score may not be more valid than a simpler field approach. Either AVPU (Alert, Verbal, Painful, Unresponsive – see below) or only the motor component of the GCS may more effectively serve in this capacity.
 b. Patients with cardiac or respiratory complaints
 i. Pulse oximetry
 ii. 12-lead EKG should be obtained early in patients with cardiac complaints
 iii. Continuous cardiac monitoring, if available
 iv. Consider waveform capnography
 c. Patient with altered mental status
 i. Assess blood glucose
 ii. Consider waveform capnography
 d. Stable patients should have at least two sets of pertinent vital signs. Ideally, one set should be taken shortly before arrival at receiving facility
 e. Critical patients should have pertinent vital signs frequently monitored
7. Obtain OPQRST history:
 a. O: onset of symptoms
 b. P: provocation – location; any exacerbating or alleviating factors
 c. Q: quality of pain
 d. R: radiation of pain
 e. S: severity of symptoms - pain scale
 f. T: time of onset and circumstances around onset
8. Obtain SAMPLE history:
 a. S: symptoms
 b. A: allergies - medication, environmental, and foods
 c. M: medications - both prescription and over-the-counter; bring all containers to hospital if possible
 d. P: past medical history
 i. look for medical alert tags, portable medical records, advance directives
 ii. look for medical devices/implants: some common ones may be dialysis shunt, insulin pump, pacemaker, central venous access port, gastric tubes, urinary catheter
 e. L: last oral intake
 f. E: events leading up to the 911 call. In patient with syncope, seizure, altered mental status, or acute stroke, consider bringing witness to the hospital or obtain their contact phone number to provide to ED care team

Treatment and Interventions:
1. Oxygen supplementation if needed to reach target of ≥ 94%
2. Place appropriate monitoring equipment as dictated by assessment. These may include
 a. Continuous pulse oximetry
 b. Cardiac rhythm monitoring

All Rights Reserved V.11-14
c. Waveform capnography
d. Carbon monoxide assessment

3. Establish vascular access if indicated or in patients who are at risk for clinical deterioration
4. Monitor pain scale if appropriate
5. Reassess patient

Patient safety considerations
1. Routine use of lights and sirens is not warranted
2. Be aware of legal issues and patient rights as they pertain to and impact patient care, e.g. patients with functional needs or children with special healthcare needs
3. Be aware of potential need to adjust management based on patient age and/or comorbidities, including medication dosages
4. The maximum weight-based dose of medication administered to a pediatric patient should not exceed the maximum adult dose except where specifically stated in a patient care guideline
5. Direct medical oversight should be contacted when mandated or as needed

Notes/Educational Pearls

Key considerations
1. Pediatrics: use a weight-based assessment tool (length-based tape or other system) to estimate patient weight and guide medication therapy and adjunct choice. Although the defined age varies by state, the pediatric population is generally defined by those patients who weigh up to 40 kg or up to 14 years of age, whichever comes first
2. Geriatrics: although the defined age varies by state, the geriatric population is generally defined as those patients who are 65 years old or more. In these patients, as well as all adult patients, reduced medication dosages may apply to patients with renal disease (i.e. on dialysis or a diagnosis of chronic renal insufficiency) or hepatic disease (i.e. severe cirrhosis or end-stage liver disease)
3. Co-morbidities: reduced medication dosages may apply to patients with renal disease (i.e. on dialysis or a diagnosis of chronic renal insufficiency) or hepatic disease (i.e. severe cirrhosis or end-stage liver disease)
4. Vital signs:
 a. Oxygen
 Goal oxygen saturation is $\geq 94\%$. Supplemental oxygen administration is warranted to patients with oxygen saturations below this level and titrated based upon clinical condition, clinical response, and geographic location and altitude
 b. Normal vital signs—see chart
 i. Hypotension is considered a systolic blood pressure less than the lower limit on the chart
 ii. Tachycardia is considered a pulse above the upper limit on the chart
 iii. Bradycardia is considered a pulse below the lower limit on the chart
 iv. Tachypnea is considered a respiratory rate above the upper limit on the chart
 v. Bradypnea is considered a respiratory rate below the lower limit on the chart
5. Secondary survey may not be completed if patient has critical primary survey problems
6. In critical patients, proactive patient management should occur simultaneously with assessment. Ideally, one provider should be assigned to exclusively monitor and facilitate...
patient-focused care. Treatment and Interventions should be initiated as soon as practicable, but should not impede extrication or delay transport to definitive care.

7. Air medical transport of trauma patients should be reserved for higher acuity trauma patients where there is a significant times savings over ground transport, where the appropriate destination is not accessible by ground due to systemic or logistical issues, and for patients who meet the Centers for Disease Control and Prevention’s (CDC’s) anatomic, physiologic, and situational high-acuity triage criteria.

Pertinent Assessment Findings
This guideline is too broad to list all possible findings.

Quality Improvement

Key Documentation Elements
1. At least two full sets of vital signs should be documented for every patient
2. All patient interventions should be documented

Performance Measures
1. Abnormal vital signs should be addressed and reassessed
2. Response to therapy provided should be documented including pain scale reassessment if appropriate
3. Limit scene time for patients with time-critical illness or injury unless clinically indicated

Normal Pediatric Vital Signs

<table>
<thead>
<tr>
<th>Age</th>
<th>Pulse</th>
<th>Respiratory Rate</th>
<th>Systolic BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preterm < 1 kg</td>
<td>120-160</td>
<td>30-60</td>
<td>36-58</td>
</tr>
<tr>
<td>Preterm 1 kg</td>
<td>120-160</td>
<td>30-60</td>
<td>42-66</td>
</tr>
<tr>
<td>Preterm 2 kg</td>
<td>120-160</td>
<td>30-60</td>
<td>50-72</td>
</tr>
<tr>
<td>Newborn</td>
<td>126-160</td>
<td>30-60</td>
<td>60-70</td>
</tr>
<tr>
<td>Up to 1 year</td>
<td>100-140</td>
<td>30-60</td>
<td>70-80</td>
</tr>
<tr>
<td>1-3 years</td>
<td>100-140</td>
<td>20-40</td>
<td>76-90</td>
</tr>
<tr>
<td>4-6 years</td>
<td>80-120</td>
<td>20-30</td>
<td>80-100</td>
</tr>
<tr>
<td>7-9 years</td>
<td>80-120</td>
<td>16-24</td>
<td>84-110</td>
</tr>
<tr>
<td>10-12 years</td>
<td>60-100</td>
<td>16-20</td>
<td>90-120</td>
</tr>
<tr>
<td>13-14 years</td>
<td>60-90</td>
<td>16-20</td>
<td>90-120</td>
</tr>
<tr>
<td>15 years and older</td>
<td>60-90</td>
<td>14-20</td>
<td>90-130</td>
</tr>
</tbody>
</table>
Glasgow Coma Scale

<table>
<thead>
<tr>
<th>ADULT GLASGOW COMA SCALE</th>
<th>PEDIATRIC GLASGOW COMA SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye Opening (4)</td>
<td>Eye Opening (4)</td>
</tr>
<tr>
<td>Spontaneous</td>
<td>Spontaneous</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>To Speech</td>
<td>To Speech</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>To Pain</td>
<td>To Pain</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Best Motor Response (6)</td>
<td>Best Motor Response (6)</td>
</tr>
<tr>
<td>Obeys Commands</td>
<td>Spontaneous Movement</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Localizes Pain</td>
<td>Withdraws to Touch</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Withdraws From Pain</td>
<td>Withdraws from Pain</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Abnormal Flexion</td>
<td>Abnormal Flexion</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Abnormal Extension</td>
<td>Abnormal Extension</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Verbal Response (5)</td>
<td>Verbal Response (5)</td>
</tr>
<tr>
<td>Oriented</td>
<td>Coos, Babbles</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Confused</td>
<td>Irritable Cry</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Inappropriate</td>
<td>Cries to Pain</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Incomprehensible</td>
<td>Moans to Pain</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
</tbody>
</table>

References

Revision Date
September 15, 2014

All Rights Reserved V.11-14
Functional Needs

(No NEMSIS category)

Patient Care Goals
To meet and maintain the additional support required for patients with functional needs during the delivery of prehospital care

Patient Presentation
Inclusion Criteria
Patients who are identified by the World Health Organization’s International Classification of Functioning, Disability, and Health (ICF) that have experienced a decrement in health resulting in some degree of disability. According to the U.S. Department of Health and Human Services, this includes, but is not limited to, individuals with physical, sensory, mental health, and cognitive and/or intellectual disabilities affecting their ability to function independently without assistance

Exclusion Criteria
None

Patient Management
Assessment
Identify the functional need by means of information from the patient, the patient’s family, bystanders, medic alert bracelets or documents, or the patient’s adjunct assistance devices

The physical examination should not be intentionally cut short, although the manner in which the exam is performed may need to be modified to accommodate the specific needs of the patient

Treatment and Interventions
Medical care should not intentionally be reduced or abbreviated during the triage, treatment and transport of patients with functional needs, although the manner in which the care is provided may need to be modified to accommodate the specific needs of the patient

Patient Safety Considerations
For patients with communication barriers (language or sensory), it may be desirable to obtain secondary confirmation of pertinent data (e.g. allergies) from the patient’s family, interpreters, or written or electronic medical records. The family members can be an excellent source of information and the presence of a family member can have a calming influence on some of these patients

Notes/Educational Pearls
Key Considerations
1. Communication Barriers
 a. Language Barriers:
 i. Expressive and/or receptive aphasia
 ii. Nonverbal
iii. Fluency in a different language than that of the EMS professional

iv. Examples of tools to overcome language barriers include:
 1. Transport of an individual who is fluent in the patient’s language along with the patient to the hospital
 2. Medical translation cards
 3. Telephone-accessible services with live language interpreters
 4. Methods through which the patient augments his/her communication skills (e.g. eye blinking, nodding) should be noted, utilized as able, and communicated to the receiving facility

b. Sensory Barriers:
 i. Visual impairment
 ii. Auditory impairment

 iii. Examples of tools to overcome sensory barriers include:
 1. Braille communication card
 2. Sign language
 3. Lip reading
 4. Hearing aids
 5. Written communication

2. Physical Barriers:
 i. Ambulatory impairment (e.g. limb amputation, bariatric)
 ii. Neuromuscular impairment

3. Cognitive Barriers:
 i. Mental illness
 ii. Developmental challenge or delay

Pertinent assessment findings

1. Assistance Adjuncts
 Examples of devices that facilitate the activities of life for the patient with functional needs include, but are not limited to:
 a. Extremity prostheses
 b. Hearing aids
 c. Magnifiers
 d. Tracheostomy speaking valves
 e. White or sensory canes
 f. Wheelchairs or motorized scooters

2. Service Animals
 As defined by the American Disabilities Act, “any guide dog, signal dog, or other animal individually trained to do work or perform tasks for the benefit of an individual with a disability, including, but not limited to guiding individuals with impaired vision, alerting individuals with impaired hearing to intruders or sounds, providing minimal protection or rescue work, pulling a wheelchair, or fetching dropped items”

 Services animals are not classified as a pet and should, by law, always be permitted to accompany the patient with the following exceptions:
A public entity may ask an individual with a disability to remove a service animal from the premises if:
 a. The animal is out of control and the animal's handler does not take effective action to control it; or
 b. The animal is not housebroken

Service animals are not required to wear a vest or a leash. It is illegal to make a request for special identification or documentation from the service animal’s partner. EMS providers may only ask the patient if the service animal is required because of a disability and the form of assistance the animal has been trained to perform

EMS providers are not responsible for the care of service animal. If the patient is incapacitated and cannot personally care for the service animal, a decision can be made whether or not to transport the animal in this situation

Animals that solely provide emotional support, comfort, or companionship do not qualify as service animals

Quality Improvement

Key documentation elements
1. Language barriers:
 a. The patient’s primary language of fluency
 b. The identification of the person assisting with the communication
 c. The methods through which the patient augments his/her communication skills should be communicated to the receiving facility

2. Sensory barriers:
 a. The methods through which the patient augments his/her communication skills communicated to the receiving facility
 b. Written communication between the patient and the EMS professional is part of the medical record, even if it is on a scrap sheet of paper, and it should be retained with the same collation, storage, and confidentiality policies and procedures that are applicable to the written or electronic patient care report

3. Assistance adjuncts (devices that facilitate the activities of life for the patient)

Performance measures
1. Accuracy of key data elements (chief complaint, past medical history, medication, allergies)
2. Utilization of the appropriate adjuncts to overcome communication barriers
3. Documentation of the patient’s functional need and avenue exercised to support the patient
4. Documentation of complete and accurate transfer of information regarding the functional need to the receiving facility

References
1. Americans with Disabilities Act 1990, 42 U.S. Code, Chapter 126
4. International classification of functioning, disability and health; 54th World Health Assembly, WHA 54.21, Agenda Item 13.9, May 21, 2001

Revision Date
September 15, 2014
Patient Refusals

(9914189 – Refusal of Care)

Patient Care Goals/Patient Presentation (Overview)
If an individual (or the parent or legal guardian of the individual) refuses secondary care and/or ambulance transport to a hospital after prehospital providers have been called to the scene, providers should determine the patient’s capacity to make decisions. Competency is generally a legal status of a person’s ability to make decisions. However, state laws vary in the definition of competency and its impact upon authority. Therefore, one should consult with the respective state EMS office for clarification on legal definitions and patient rights.

Patient Management

Assessment
Decision-Making Capacity
An individual who is alert, oriented, and has the capacity to understand the circumstances surrounding his/her illness or impairment, as well as the possible risks associated with refusing treatment and/or transport, typically is considered to have decision-making capacity. The individual’s judgment must also not be significantly impaired by illness, injury or drugs/alcohol intoxication. Individuals who have attempted suicide, verbalized suicidal intent, or have other factors that lead EMS providers to suspect suicidal intent, should not be regarded as having decision-making capacity and may not decline transport to a medical facility.

Treatment and Interventions
1. Obtain a complete set of vital signs and complete an initial assessment with particular attention to the individual’s neurologic and mental status.
2. Determine the individual’s capacity to make a valid judgment concerning the extent of his/her illness or injury. If the EMS provider has doubts about whether the individual has the mental capacity to refuse or if the patient lacks capacity, the EMS provider should contact direct medical oversight.
3. If patient has capacity, clearly explain to the individual and all responsible parties the possible risks and overall concerns with regards to refusing care.
4. Perform appropriate medical care with the consent of the individual.
5. Complete the patient care report clearly documenting the initial assessment findings and the discussions with all involved individuals regarding the possible consequences of refusing additional prehospital care and/or transportation.

Notes/Educational Pearls

Key Considerations
1. An adult or emancipated minor who has demonstrated possessing sufficient mental capacity for making decisions has the right to determine the course of his/her medical care, including the refusal of care. These individuals must be advised of the risks and consequences resulting from refusal of medical care.
2. An individual determined to lack decision-making capacity by EMS providers or should not be allowed to refuse care against medical advice or to be released at the scene. Mental illness, drugs, alcohol intoxication, or physical/mental impairment may significantly impair an individual’s decision-making capacity. Individuals who have attempted suicide, verbalized suicidal intent, or have other factors that lead EMS providers to suspect suicidal intent, should not be regarded as having demonstrated sufficient decision-making capacity.

3. EMS providers should not put themselves in danger by attempting to treat and/or transport an individual who refuses care.

4. Always act in the best interest of the patient. EMS providers, with the support of direct medical oversight, must strike a balance between abandoning the patient and forcing care.

5. **Special Considerations- Minors**
 It is preferable for minors to have a parent or legal guardian who can provide consent for treatment on behalf of the child. All states allow health care providers to provide emergency treatment when a parent is not available to provide consent. This is known as the emergency exception rule or the doctrine of implied consent. For minors, this doctrine means that the prehospital professional can presume consent and proceed with appropriate treatment and transport if the following four conditions are met:
 a. The child is suffering from an emergent condition that places his or her life or health in danger.
 b. The child’s legal guardian is unavailable or unable to provide consent for treatment or transport.
 c. Treatment or transport cannot be safely delayed until consent can be obtained.
 d. The pre-hospital professional administers only treatment for emergency conditions that pose an immediate threat to the child.

 As a general rule, when the pre-hospital professional’s authority to act is in doubt, EMS providers should always do what they believe to be in the best interest of the minor.

 If a minor is injured or ill and no parent contact is possible, the provider may contact direct medical oversight for additional instructions.

References
No specific recommendations

Revision Date
September 15, 2014
Cardiovascular
Adult and Pediatric Syncope and Presyncope

(9914149 – Syncope)

Patient Care Goals
1. Stabilize and resuscitate when necessary
2. Initiate monitoring and diagnostic procedures
3. Transfer for further evaluation

Patient Presentation
Syncope is heralded by both the loss of consciousness and the loss of postural tone. Syncope typically is abrupt in onset and resolves equally quickly. EMS providers may find the patient awake and alert on initial evaluation. Presyncope is defined as the prodromal symptoms of syncope. It usually lasts for seconds to minutes and may be described by the patient as “nearly blacking out” or “nearly fainting”

Inclusion criteria
1. Abrupt loss of consciousness with loss of postural tone
2. Prodromal symptoms of syncope

Exclusion criteria
Conditions other than the above, including patients:
1. Patients with alternate and obvious cause of loss of consciousness (such as trauma – see Head Injury Guideline)
2. Patients with ongoing mental status changes or coma should be treated per the Altered Mental Status guideline

Patient Management
Assessment
1. Pertinent History
 a. Review the patient’s past medical history, including a history of:
 i. Cardiovascular disease (cardiac disease/stroke/ etc.)
 ii. Seizure
 iii. Recent trauma
 iv. Anticoagulation
 v. Dysrhythmia
 vi. Congestive heart failure (CHF)
 vii. Syncope
 b. History of Present Illness, including:
 i. Conditions leading to the event
 ii. Patient complaints before or after the event including prodromal symptoms
 iii. History from others on scene, including seizures or shaking, presence of pulse/breathing (if noted), duration of the event, events that lead to the resolution of the event
c. Review of Systems:
 i. Occult blood loss (GI/GU)
 ii. Fluid losses (nausea/vomiting/diarrhea) and fluid intake
 iii. Current Medications

2. Pertinent Physical Exam Including:
 a. Attention to vital signs as well as evaluation for trauma
 b. Detailed neurologic exam (including stroke screening and mental status)
 c. Heart, lung, abdominal and extremity exam
 d. Additional Evaluation:
 i. Finger stick blood glucose
 ii. Cardiac monitoring
 iii. Ongoing vital signs
 iv. 12-lead EKG

Treatment and Interventions:
Should be directed at abnormalities discovered in the physical exam or on additional examination and may include management of cardiac dysrhythmias, cardiac ischemia/infarct, hypoglycemia, hemorrhage, shock, and the like.

1. Manage airway as indicated
2. Obtain detailed history
3. Oxygen as appropriate
4. Evaluate for hemorrhage and treat for shock if indicated
5. Obtain blood glucose and treat per Hypoglycemia/Hyperglycemia guideline as indicated
6. Establish IV access
7. Fluid bolus if appropriate
8. Cardiac Monitor
9. 12-lead EKG
10. Monitor for and treat arrhythmias (if present refer to appropriate guideline)

Patient Safety Considerations:
Patients suffering syncope due to arrhythmia may suffer recurrent arrhythmia and should therefore be placed on a cardiac monitor. Geriatric patients suffering falls from standing may sustain significant injury and should be diligently screened for trauma. Refer to the General Trauma Management guideline

Notes/Educational Pearls

Key Considerations
1. By being most proximate to the scene and to the patient’s presentation, EMS providers are commonly in a unique position to identify the cause of syncope. Consideration of potential causes, ongoing monitoring of vitals and cardiac rhythm as well as detailed exam and history are essential pieces of information to pass onto hospital providers
2. All patients suffering from syncope deserve hospital level evaluation, even if they appear normal with few complaints on scene
 a. High risk causes of syncope include the following:
 i. Cardiac causes – such as arrhythmias and massive pulmonary embolism

All Rights Reserved V.11-14
ii. Neurologic - some of the symptoms of seizure may mimic those of syncope with loss of consciousness and collapse. Consider seizure and obtain full history from bystander witnesses

b. Consider high risk 12-lead EKG features including:
 i. Evidence of QT prolongation
 ii. Delta waves
 iii. Brugada syndrome (incomplete RBBB pattern in V1/V2 with ST segment elevation)

Pertinent Assessment Findings
1. Evidence of trauma
2. Evidence of cardiac dysfunction (e.g. evidence of CHF, arrhythmia)
3. Evidence of hemorrhage
4. Evidence of neurologic compromise
5. Evidence of alternate etiology, including seizure
6. Initial and ongoing cardiac rhythm
7. 12-lead EKG findings

Quality Improvement
Key Documentation Elements
1. Presenting cardiac rhythm
2. Cardiac rhythm present when patient is symptomatic
3. Any cardiac rhythm changes

Performance Measures
1. Acquisition of 12-lead EKG
2. Application of cardiac monitor
3. Blood glucose measured

References
1. ACEP. Clinical Policy: Critical Issues in the Evaluation and Management of Adult Patients Presenting to the Emergency Department with Syncope
7. Fischer J. Pediatric syncope: cases from the emergency department. Emerg Medicine Clinics
Revision Date
September 15, 2014
Chest Pain/Acute Coronary Syndrome (ACS)/ST-segment Elevation Myocardial Infarction (STEMI)

(9914117 – Cardiac Chest Pain; 9914143 – ST Elevation Myocardial Infarction)

Patient Care Goals
1. Identify STEMI quickly
2. Determine the time of symptom onset
3. Activate hospital-based STEMI system of care
4. Monitor vital signs and cardiac rhythm and be prepared to provide CPR and defibrillation if needed
5. Administer appropriate medications
6. Transport to appropriate facility

Patient Presentation

Inclusion/Exclusion Criteria
Chest pain or discomfort in other areas of the body (e.g. arm, jaw, epigastrium) of suspected cardiac origin, shortness of breath, sweating, nausea, vomiting, and dizziness. Atypical or unusual symptoms are more common in women, the elderly and diabetic patients. May also present with CHF, syncope and/or shock.

Some patients will present with non-STEMI chest pain and otherwise have a low likelihood of ACS (e.g. blunt trauma to the chest of a child). For these patients, defer the administration of aspirin and nitrates and refer to Pain Management guideline.

Patient Management

Assessment, Treatment, and Interventions
1. Signs and symptoms include chest pain, congestive heart failure, syncope, shock, symptoms similar to a patient’s previous myocardial infarction (MI)
2. Assess the patient’s cardiac rhythm
 a. Treat pulseless rhythms, tachycardia, or symptomatic bradycardia (see Cardiovascular and Resuscitation guideline sections)
 b. Initiate cardiopulmonary resuscitation (CPR), defibrillation, or cardioversion if indicated
3. If the patient is dyspneic, hypoxemic, or has obvious signs of heart failure, EMS providers should administer oxygen and titrate therapy to oxygen saturation of ≥ 94% (per Universal Care guideline)
4. Administer aspirin; chewable, nonenteric-coated aspirin preferred (160 to 325 mg)
5. Establish IV Access
6. The 12-lead EKG is the primary diagnostic tool that identifies a STEMI. It is imperative that EMS providers routinely acquire a 12-lead EKG as soon as possible for all patients exhibiting signs and symptoms of ACS
 a. The EKG may be transmitted for remote interpretation by a physician or screened for STEMI by properly trained EMS providers, with or without the assistance of computer-interpretation
 b. Advance notification should be provided to the receiving hospital for patients identified as having STEMI
c. Performance of serial EKGs is suggested
d. All EKGs should be made available to treating personnel at the receiving hospital, whether brought in or transmitted from the field

7. EMS providers should administer nitroglycerin doses (tablets or spray) q 3-5 minutes as long as SBP > 100 (if range not desired, use q 3 minutes). Nitrates in all forms are contraindicated in patients with initial systolic blood pressure < 90 mm Hg and in patients with suspected right ventricular infarction because these patients require adequate RV preload, which can be affected by nitrate administration.

8. Nitrates are contraindicated when patients have taken an erectile dysfunction medication within 24 hours (48 hours for tadalafil)

9. Analgesia is indicated in STEMI when chest discomfort is unresponsive to nitrates. Morphine should be used with caution in unstable angina (UA)/NSTEMI due to an association with increased mortality

10. Transport and destination decisions should be based on local resources and system of care

Patient Safety Considerations
1. Observe for signs of clinical deterioration: dysrhythmias, CP, SOB, decreased LOC/syncope, or other signs of shock/hypotension
2. Perform serial 12-lead EKGs (especially any time clinical changes noted)

Notes/Educational Pearls

Key Considerations
Acute coronary syndrome may present with atypical pain, vague or only generalized complaints

Pertinent Assessment Findings
A complete medication list should be obtained from each patient. It is especially important for the treating physician to be informed if the patient is taking beta-blockers, calcium channel blockers, clonidine, digoxin, and medications for the treatment of erectile dysfunction

Quality Improvement

Key Documentation Elements
1. The time of symptom onset
2. The time of arrival on scene to the time of 12-lead EKG acquisition
3. The time of 12-lead EKG acquisition to the time of identification of a STEMI
4. The time ASA administered, or reason why not given
5. The time of STEMI notification

Performance Measures
1. The time of EMS arrival on scene to the time of 12-lead EKG acquisition
2. The time of a STEMI patient’s ultimate arrival to a PCI center
3. The time of EMS notification to the time of activation of a cardiac catheterization laboratory
4. The time of arrival at the PCI center to the time of cardiac catheterization (door-to-balloon time)
5. The time of prehospital 12-lead EKG acquisition to the time of cardiac catheterization (EKG-to-balloon time)
References

Revision Date
September 15, 2014
Bradycardia

(9914115 – Bradycardia)

Patient Care Goals
1. Maintain adequate perfusion
2. Treat underlying cause:
 a. Hypoxia
 b. Shock
 c. Second or third degree AV block
 d. Toxin exposure (beta-blocker, calcium channel blocker, organophosphates, digoxin)
 e. Electrolyte disorder
 f. Increased intracranial pressure (ICP)
 g. Other

Patient Presentation

Inclusion Criteria
1. Heart rate < 60 with either symptoms (AMS, CP, CHF, seizure, syncope, shock, pallor, diaphoresis) or evidence of hemodynamic instability
2. The major EKG rhythms classified as bradycardia include:
 a. Sinus bradycardia
 b. Second-degree AV block
 c. Type I — Wenckenbach/Mobitz I
 d. Type II — Mobitz II
 e. Third-degree AV block complete block
 f. Ventricular escape rhythms
3. See additional inclusion criteria, below, for pediatric patients

Exclusion Criteria
No specific recommendations

Patient Management

Assessment, Treatment, and Interventions
1. Adult Management
 a. Manage airway as necessary
 b. Provide supplemental O₂ as needed to maintain O₂ saturation ≥ 94%
 c. Initiate monitoring and perform 12-lead EKG
 d. Establish IV access
 e. Finger stick blood glucose and treat hypoglycemia per the Hypoglycemia/Hyperglycemia guideline
 f. Consider the following additional therapies if bradycardia and symptoms or hemodynamic instability continue:
 i. Atropine 0.5 mg IV q 3-5 minute (max 3 mg)
 ii. Chronotropic medications (no order of preference intended)
1. Epinephrine 2-10 micrograms/minute IV or
2. Dopamine 2-20 micrograms/kg/minute IV or
3. Norepinephrine - there is recent evidence that supports the use of norepinephrine as the preferred intervention. If no response from other chronotropic medications, and the symptomatic bradycardia is associated with AV heart block, administer 0.03 mg Norepinephrine IV push with caution
 iii. Transcutaneous Pacing
 If pacing is performed, consider sedation or pain control

2. Pediatric Management
 Treatment is only indicated for patients who are symptomatic (pale/cyanotic, diaphoretic, altered mental status, hypoxic)
 a. Initiate chest compressions
 b. Manage airway and assist ventilations as necessary with minimally interrupted chest compressions using a compression to ventilation ratio 15:2 (30:2 if single provider is present)
 c. Provide supplemental O₂ as needed to maintain O₂ saturations ≥ 94%
 d. Initiate monitoring and perform 12-lead EKG
 e. Establish IV access
 f. Finger stick blood glucose and treat hypoglycemia per the Hypoglycemia/Hyperglycemia guideline
 g. Consider the following additional therapies if bradycardia and symptoms or hemodynamic instability continue:
 i. Epinephrine (1:10,000) 0.01 mg/kg IV every 3-5 minutes
 ii. Also consider atropine 0.01-0.02 mg/kg IV with minimum dose of 0.1 mg if increased vagal tone or cholinergic drug toxicity
 iii. Transcutaneous pacing. If pacing is performed, consider sedation or pain control

 Epinephrine may be used for bradycardia and poor perfusion unresponsive to ventilation and oxygenation. It is reasonable to administer atropine for bradycardia caused by increased vagal tone or cholinergic drug toxicity

 Patient Safety Considerations
 If pacing is performed, consider sedation or pain control

Notes/Educational Pearls
Key Considerations
1. Observe for signs of decreased end-organ perfusion: chest pain (CP), shortness of breath (SOB), decreased level of consciousness, syncope or other signs of shock/hypotension
2. Patients who have undergone cardiac transplant will not respond to atropine
3. Consider potential culprit medications including beta-blockers, calcium channel blockers, sodium channel blockers/anti-depressants, cocaine, clonidine, digoxin, and clonidine. If medication overdose is considered, refer to appropriate guideline in the Toxins and Environmental section.

4. The differential diagnosis includes the following: MI, hypoxia, pacemaker failure, hypothermia, sinus bradycardia, athletes, head injury with increased ICP, stroke, spinal cord lesion, sick sinus syndrome, AV blocks, overdose.

5. Consider hyperkalemia in the patient with wide complex bradycardia.

6. Bradycardia should be managed via the least invasive manner possible, escalating care as needed.
 a. Third degree heart block or the denervated heart (as in cardiac transplant) may not respond to atropine and in these cases, proceed quickly to chronotropic agents (such as epinephrine or dopamine), or transcutaneous pacing.
 b. In cases of impending hemodynamic collapse, proceed directly to transcutaneous pacing.

7. Be aware of acute coronary syndrome as a cause of bradycardia in adult patients.

8. For symptomatic bradycardia or unstable bradycardia, IV infusion chronotropic agents (dopamine and epinephrine) are now recommended as an equally effective alternative to external pacing when atropine is ineffective.

9. When dosing medications for pediatric patients, dose should be weight based on non-obese patients and based on ideal body weight for obese patients.

10. Pediatric patients who receive atropine for bradycardia improved their survival rates compared to those who received epinephrine.

Pertinent Assessment Findings

No specific recommendations.

Quality Improvement

Key Documentation Elements

1. Time and dose of medications given
2. Time pacing started (as well as rate and joules)

Performance Measures

1. Response to medication/treatment

References

Revision Date
September 15, 2014
Tachycardia with a Pulse

(9914147 – Supraventricular Tachycardia (Including Atrial Fibrillation))

Patient Care Goals
1. Maintain adequate oxygenation, ventilation and perfusion
2. Restore regular sinus rhythm - correct rhythm disturbance
3. Search for underlying cause:
 a. Medications (caffeine, diet pills, thyroid, decongestants)
 b. Drugs (cocaine, amphetamines)
 c. History of dysrhythmia
 d. CHF

Patient Presentation
Patients will manifest elevated heart rate for age and may or may not also present with associated symptoms such as palpitations, dyspnea, chest pain, syncope/near-syncope, hemodynamic compromise, altered mental status or other signs of end organ malperfusion

Inclusion Criteria
Heart Rate > 100 in adults or relative tachycardia in pediatric patients

Exclusion Criteria
Sinus tachycardia

Patient Management
Assessment, Treatments, and Interventions
1. Adult Management
 a. Manage airway as necessary
 b. Provide supplemental O₂ as needed to maintain O₂ saturation ≥ 94%
 c. Initiate monitoring and perform 12-lead EKG
 d. Establish IV access
 e. Finger stick blood glucose and treat hypoglycemia per the Diabetic guideline
 f. Consider the following additional therapies if tachycardia and symptoms or hemodynamic instability continue:
 i. **Regular Narrow Complex Tachycardia – Stable (SVT)**
 1. Perform vagal maneuvers
 2. Adenosine 6 mg IV followed by 10 ml fluid bolus. If tachycardia continues, give adenosine 12 mg IV. A third dose of adenosine, 12 mg IV, can be given
 3. Diltiazem 0.25 mg/kg slowly IV over 2 minutes. After 15 minutes, a second dose of diltiazem 0.35 mg/kg IV may be given if needed
 4. Metoprolol 5 mg IV given over 1-2 minutes. May repeat as needed every 5 minutes for a total of 3 doses
 ii. **Regular Narrow Complex Tachycardia – Unstable**
 1. Deliver a synchronized shock based on manufacturer’s recommendations

All Rights Reserved V.11-14
2. For responsive patients, consider sedation

iii. **Irregular Narrow Complex Tachycardia – Stable** (atrial fibrillation, atrial flutter, multifocal atrial tachycardia)
 1. Diltiazem 0.25 mg/kg slowly IV over 2 minutes. After 15 minutes, a second dose of diltiazem 0.35 mg/kg IV may be given if needed. For patients older than 65, recommend initial dose of diltiazem 10 mg IV and a second dose of 20mg
 2. Metoprolol 5 mg IV given over 1-2 minutes. May repeat as needed every 5 minutes for a total of 3 doses

iv. **Irregular Narrow Complex Tachycardia – Unstable**
 1. Deliver a synchronized shock based on manufacturer’s recommendation
 2. For responsive patients, consider sedation

v. **Regular Wide Complex Tachycardia – Stable** (ventricular tachycardia - VT, supraventricular tachycardia - SVT, atrial fibrillation/flutter with aberrancy, accelerated idioventricular rhythms, pre-excited tachycardias with accessory pathways, torsades de pointes)
 1. Adenosine 6 mg IV followed by 10 ml fluid bolus; if monomorphic tachycardia continues, give adenosine 12 mg IV
 2. Amiodarone 150 mg IV over 10 minute; may repeat
 3. Procainamide drip at 10 mg/minute for a maximum dose of 17 mg/kg
 4. Lidocaine 1-1.5 mg/kg IV; may be repeated at 5 minute intervals for a maximum dose of 3 mg/kg IV

vi. **Irregular Wide Complex Tachycardia – Stable** (atrial fibrillation with aberrancy, pre-excited atrial fibrillation (i.e. atrial fibrillation using an accessory pathway), MAT or polymorphic VT/torsades de pointes.
 1. Amiodarone 150 mg IV over 10 minute; may repeat if needed
 2. Metoprolol 5 mg IV given over 1-2 minutes. May repeat as needed every 5 minutes for a total of 3 doses
 3. If torsades, give magnesium 1-2 grams IV over 15 minutes

2. **Pediatric Management**
 a. Manage airway as necessary
 b. Provide supplemental O₂ as needed to maintain O₂ saturation > 94%
 c. Initiate monitoring and perform 12-lead EKG
 d. Establish IV access
 e. Finger stick blood glucose and treat hypoglycemia per the Hypoglycemia/Hyperglycemia guideline
 f. Consider the following additional therapies if tachycardia and symptoms or hemodynamic instability continue:
 i. **Regular Narrow Complex Tachycardia – Stable** (SVT)
 1. Perform vagal maneuvers
 2. Adenosine 0.1 mg/kg; if unsuccessful, may repeat with 0.2 mg/kg
 ii. **Regular Narrow Complex Tachycardia – Unstable**
 1. Deliver a synchronized shock; 0.5-1 J/kg for the first dose
 2. Repeat doses should be 2 J/kg
iii. **Regular, Wide Complex Tachycardia - Stable**
 1. Consider adenosine 0.1 mg/kg for SVT with aberrancy
 2. Otherwise give amiodarone 5 mg/kg IV over 10 minutes

iv. **Regular, Wide Complex Tachycardia – Unstable**
 Synchronized cardioversion 0.5-1.0 J/kg

Notes/Educational Pearls

Key Considerations

1. **Causes:**
 a. Hypovolemia
 b. Hypoxia
 c. Hydrogen (acidosis)
 d. Myocardial Infarction
 e. Hypokalemia/hyperkalemia
 f. Hypoglycemia
 g. Hypothermia
 h. Toxins/Overdose
 i. Tamponade
 j. Tension pneumothorax
 k. Thrombus – central or peripheral
 l. Trauma
 m. Hyperthyroidism

2. Atrial fibrillation rarely requires cardioversion in the field. As it is difficult to ascertain onset, risk of stroke needs to be addressed

3. A wide-complex irregular rhythm should be considered pre-excited atrial fibrillation; extreme care must be taken in these patients. Characteristic EKG findings include a short PR interval and in some cases, a delta wave. Avoid AV nodal blocking agents such as adenosine, calcium channel blockers, digoxin, and possibly beta-blockers in patients with pre-excitation atrial fibrillation because these drugs may cause a paradoxical increase in the ventricular response. Blocking the AV node in some of these patients may lead to impulses that are transmitted exclusively down the accessory pathway, which can result in ventricular fibrillation.
Amiodarone can be used instead

4. Amiodarone can be used as a rate-controlling agent for patients who are intolerant of or unresponsive to other agents, such as patients with CHF who may not otherwise tolerate diltiazem or metoprolol. Caution should be exercised in those who are not receiving anticoagulation, as amiodarone can promote cardioversion

5. Administer metoprolol to patients with SBP greater than 120. Worsening CHF, COPD, asthma, as well as hypotension and bradycardia can occur with use of metoprolol

6. Few studies have demonstrated the effectiveness of procainamide so it remains a second-line medication. Procainamide has been shown to cause hypotension, especially in situations when left ventricle function has been impaired. It may induce atrioventricular conduction disturbances, including heart block, and must be used with extreme caution in patients who have previously received amiodarone

7. Lidocaine is less effective in terminating VT than procainamide, sotalol, and amiodarone when given to patients with or without a history of MI with stable VT in the hospital setting. Lidocaine has been reported to variably terminate VT when administered intramuscularly to
patients with AMI and VT in the out-of-hospital setting. Lidocaine should be considered second-line antidysrhythmic therapy for monomorphic VT

8. Biphasic waveforms are have been proven to convert atrial fibrillation at lower energies and higher rates of success than monophasic waveforms. Strategies include dose escalation (70, 120, 150, 170J for biphasic or 100, 200, 300, 360J for monophasic) versus beginning with single high energy/highest success rate for single shock delivered

9. Studies in infants and children have demonstrated the effectiveness of adenosine for the treatment of hemodynamically stable or unstable SVT

10. Adenosine should be considered the preferred medication for stable SVT. Verapamil may be considered as alternative therapy in older children but should not be routinely used in infants. Procainamide or amiodarone given by a slow IV infusion with careful hemodynamic monitoring may be considered for refractory SVT

11. When dosing medications for pediatric patients, dose should be weight based in non-obese patients and based on ideal body weight for obese patients

Pertinent Assessment Findings

No specific recommendations

Patient Safety Considerations

1. Only use one antidysrhythmic at a time
2. If using cardioversion, consider sedation or pain control
3. With irregular wide complex tachycardia (atrial fibrillation with aberrancy such as Wolff-Parkinson-White and Lown-Ganong Levine), avoid use of calcium channel blockers and beta blockers

Quality Improvement

Key Documentation Elements

1. All rhythm changes
2. Patient response to medications
3. Patient response to attempt to cardiovert (as well as times/joules)
4. Obtain monitor strips after each intervention

Performance Measures

Time to clinical improvement

References

Revision Date
September 15, 2014
Suspected Stroke / Transient Ischemic Attack

(9914145 – Stroke/TIA)

Patient Care Goals
1. Detect neurological deficits
2. Determine eligibility for transport to a stroke center

Patient Presentation
1. Neurologic deficit such as facial droop, localized weakness, gait disturbance, slurred speech, altered mentation
2. Hemiparesis or hemiplegia
3. Dysconjugate gaze, forced or crossed gaze (if patient is unable to voluntarily respond to exam, makes no discernible effort to respond, or LOC is such as there is no response)
4. Severe headache, neck pain/stiffness, difficulty seeing

Inclusion Criteria
Patient has signs and symptoms consistent with stroke or transient ischemic attack (TIA)

Exclusion Criteria
1. If glucose < 60 refer to Hypoglycemia/Hyperglycemia guideline
2. If trauma and GCS < 13, refer to Head Injury and General Trauma Management guidelines

Patient Management

Assessment
1. Use a validated prehospital stroke scale that may include, but is not limited to:
 a. Facial smile/grimace – ask patient to smile
 b. Arm drift – close eyes and hold out arms for count of 10 seconds
 c. Speech -“You can’t teach an old dog new tricks”
2. Pertinent historical data includes:
 a. History: “last seen normal”
 b. TPA exclusions
 i. Previous cerebral hemorrhage
 ii. Current anti-coagulant therapy
 iii. Head trauma or prior stroke in previous 3 months
 iv. Symptoms suggest subarachnoid hemorrhage
 v. Arterial puncture at noncompressible site in previous 7 days
 vi. History of previous intracranial hemorrhage
 vii. Elevated blood pressure (systolic > 185 mm Hg or diastolic > 110 mm Hg)
 viii. Evidence of active bleeding on examination
 ix. Blood glucose concentration < 50 mg/dl
 x. Minor or rapidly improving stroke symptoms (clearing spontaneously)
xi. Seizure at onset with postictal residual neurologic impairments
xii. Major surgery or serious trauma within previous 14 days
xiii. Recent gastrointestinal or urinary tract hemorrhage (within previous 21 days)
xiv. Recent acute myocardial infarction (within previous 3 months)
c. Neurologic status assessment (see Appendix VI)

Treatment and Interventions
1. Determine – Time “last seen normal”
2. Provide oxygen only if \(O_2 \) saturation < 94%. Titrate to > 94%
3. If seizure activity present, refer to Seizures guideline
4. Obtain blood glucose level. Treat only if glucose < 60
5. Acquire 12-lead EKG if possible

Patient Safety Considerations
1. Prevent aspiration – elevate head of stretcher 15-30 degrees if systolic BP >100 mm Hg; maintain head and neck in neutral alignment, without flexing the neck
2. Protect paralyzed limbs from injury
3. Avoid multiple IV attempts

Notes/Educational Pearls
Key Considerations
1. Patients presenting with signs/symptoms of stroke should be transported to the nearest stroke center or, if not available, a stroke-capable facility
2. Do not treat hypertension
3. Cardiac monitor
4. Complete stroke checklist and leave copy with hospital – forward one to EMS agency
5. Pediatrics: Treatment principles remain the same. Although rare, pediatric patients can have strokes. Stroke scales are not validated for pediatric patients. The EMS crew should call ahead to make sure that the hospital can manage the patient

Quality Improvement
Key Documentation Elements
1. “Last seen normal” must be specific. If the patient was last seen normal prior to bedtime the night before, this is the time to be documented. (Not time the patient woke up with symptoms present)
2. Blood glucose results
3. Specific validated stroke scale used and findings

Performance Measures
Documentation of neuro assessment status, changes prehospital including validated stroke scale used and findings
References
1. www.strokeassociation.org

Revision Date
September 15, 2014
General Medical
Abuse and Maltreatment

(9914187 – Neglect or Abuse Suspected)

Patient Care Goals

1. Recognize any act or series of acts of commission or omission by a caregiver or person in a position of power over the patient that results in harm, potential for harm, or threat of harm to a patient
2. These situations may involve safety issues for responding providers, so take appropriate steps to protect the safety of the responders as well as bystanders
3. Get the patient out of immediate danger
4. Assess any patient injuries that may be the result of acute or chronic events
5. Attempt to preserve evidence whenever possible, however the overriding concern should be providing appropriate emergency care to the patient

Patient Presentation

1. Clues to abuse or maltreatment can vary with age group of the patient and type of abuse
2. Not all abuse or maltreatment is physical
3. EMS role is to:
 a. Document concerns
 b. Assess potentially serious injuries
 c. Disclose concerns to appropriate authorities
 d. Initiate help to get the patient into a safe situation
 e. Not to investigate or intervene beyond the steps above
 f. Leave further intervention to law enforcement personnel

Inclusion/Exclusion Criteria

Absolute inclusion/exclusion criteria are not possible in this area. Rather, clues consistent with different types of abuse/maltreatment should be sought:

1. Potential clues to abuse/maltreatment from caregivers or general environment:
 a. Caregiver apathy about patient’s current situation
 b. Caregiver overreaction to questions about situation
 c. Inconsistent histories from caregivers or bystanders regarding what happened
 d. Information provided by caregivers or patient that is not consistent with injury patterns
 e. Injuries not appropriate for patient’s age or physical abilities (e.g. infants with injuries usually associated with ambulatory children, elders who have limited mobility with injury mechanisms inconsistent with their capabilities)
 f. Caregiver not allowing patient to speak for himself/herself, or who appears controlling
 g. Inadequate facilities where the patient lives and/or evidence of security measures that appear to confine people to the facility
2. Potential clues to abuse or maltreatment that can be obtained from the patient:
 a. Multiple bruises in various stages of healing

All Rights Reserved V.11-14
b. Age inappropriate behavior (e.g. adults who are submissive or fearful, children who act in a sexually inappropriate way)

c. Pattern burns, bruises, or scars suggestive of specific weaponry used

d. Evidence of medical neglect for injuries or infections

e. Trauma to genitourinary systems or frequent infections to this system

f. Evidence of malnourishment and/or serious dental problems

g. Inability to communicate due to language and/or cultural barrier

3. Have a high index of suspicion for abuse in children presenting with an Apparent Life Threatening Event (ALTE)

Patient Management

Assessment

1. Start with a primary survey and identify any potentially life threatening issues

2. Document thorough secondary survey for potential abuse/maltreatment red flags:

 a. Inability to communicate due to language and/or cultural barrier

 b. Multiple bruises in various stages of healing

 c. Age inappropriate behavior (e.g. adults who are submissive or fearful, children who act in a sexually inappropriate way)

 d. Pattern burns, bruises, or scars suggestive of specific weaponry used

 e. Evidence of medical neglect for injuries or infections

 f. Trauma to genitourinary systems or frequent infections to this system

 g. Evidence of malnourishment and/or serious dental problems

3. Assess physical issues and avoid extensive investigation of the specifics of abuse or maltreatment, but document any statements made spontaneously by patient

Treatment and Interventions

1. Address life threatening issues

2. Find way to get patient to a safe place even if no medical indication for transport

3. Report concerns about potential abuse/maltreatment to law enforcement immediately, in accordance with state law, about:

 a. Caregivers impeding your ability to assess/transport patient

 b. Caregivers refusing care for the patient

4. For patients transported, report concerns to hospital and/or law enforcement personnel per mandatory reporting laws

Patient Safety Considerations

1. If no medical emergency exists, next priority is safe patient disposition/removal from the potentially abusive situation

2. Do not confront suspected perpetrators of abuse/maltreatment. This can create an unsafe situation for EMS and for the patient
Notes/Educational Pearls

Key Considerations
1. Definitions:
 a. Abuse/maltreatment: Any act or series of acts of commission or omission by a caregiver or person in a position of power over the patient that results in harm, potential for harm, or threat of harm to a patient
 b. Child maltreatment/abuse: Child maltreatment includes any act or series of acts of commission or omission by a parent or other caregiver that results in harm, potential for harm, or threat of harm to a child. An act of commission (child abuse) is the physical, sexual or emotional maltreatment or neglect of a child or children. An act of omission (child neglect) includes failure to provide (e.g. physical, emotional, medical/dental, and educational neglect) and failure to supervise (e.g. inadequate supervision, and exposure to violent environments)
 c. Human trafficking: when people are abducted or coerced into service and often transported across international borders
2. Clues to abuse or maltreatment can vary depending on the age group of the patient and on the nature of the abuse. Remember that not all abuse or maltreatment involves physical harm. It is important to realize that the job of EMS is to document their concerns, assess the patient for potentially serious injuries, make sure that their concerns are disclosed to the appropriate legal authorities, and work towards getting the patient into a safe situation. EMS personnel should not take it upon themselves to investigate or intervene above and beyond those concepts and should leave further intervention to the appropriate law enforcement personnel
3. It is very important to have a high index of suspicion for abuse in children presenting with an Apparent Life Threatening Event (ALTE). Of the very serious causes of ALTE, child abuse has been found in as many as 11% of cases. One retrospective review noted that a call to 911 for ALTE was associated with an almost 5 times greater odds of abusive head trauma being diagnosed as the cause of the ALTE, clearly emphasizing the high index of suspicion EMS providers must have when responding to these calls
4. Abuse and maltreatment can happen to patients of all ages
5. Patients may be unwilling or unable to disclose abuse or maltreatment so the responsibility falls on EMS personnel to assess the situation, document appropriately, and take appropriate action to secure a safe place for the patient
6. Document findings by describing what you see and not ascribing possible causes (e.g. “0.5 inch round burn to back” as opposed to “burn consistent with cigarette burn”

Pertinent Assessment Findings
As noted above
Quality Improvement

Key Documentation Elements
Meticulous documentation of any statements by the patient and any physical findings on the patient or the surroundings are critical in abuse or maltreatment cases

Performance Measures
No specific recommendations

References
1. Department of Homeland Security has an initiative called the Blue Campaign that focuses on helping EMS personnel recognize potential human trafficking – the website, which includes resources for EMS personnel, is at: http://www.usfa.fema.gov/fireservice/ems/human_trafficking/
2. All states have specific mandatory reporting laws that dictate which specific crimes such as suspected abuse or maltreatment must be reported and to whom they must be reported. It is important to be familiar with the specific laws in your state including specifically who must make disclosures, what the thresholds are for disclosures, and to whom the disclosures must be made

Revision Date
September 15, 2014
Agitated or Violent Patient/Behavioral Emergency

(9914053 – Behavioral/Patient Restraint)

Patient Care Goals
1. Provision of emergency medical care to the agitated, violent, or uncooperative patient
2. Maximizing and maintaining safety for the patient, EMS personnel, and others

Patient Presentation

Inclusion criteria
Patients of all ages who are exhibiting agitated, violent, or uncooperative behavior or who are a danger to self or others

Exclusion criteria
Patients exhibiting agitated or violent behavior due to medical conditions including, but not limited to:
1. Head trauma
2. Metabolic disorders (e.g. hypoglycemia, hypoxia)

Patient Management

Assessment
1. Note medications/substances on scene that may contribute to the agitation, or may be treatment of relevant medical condition
2. Maintain and support airway
3. Respiratory rate and effort. Ideally, monitor pulse oximetry and/or capnography
4. Circulatory status:
 a. Blood pressure (if possible)
 b. Pulse rate
 c. Capillary refill
5. Mental status
 a. Obtain blood glucose (if possible)
6. Temperature (if possible)
7. Evidence of traumatic injuries

Treatment and Interventions
1. Patient Rapport
 a. Attempt verbal reassurance and calm patient prior to use of chemical and/or physical restraints
 b. Engage family members/loved ones to encourage patient cooperation if their presence does not exacerbate the patient’s agitation
 c. Continued verbal reassurance and calming of patient following chemical/physical restraints

All Rights Reserved V.11-14
2. Chemical Restraints
 a. Notes:
 i. Selection of chemical restraint should be based upon the patient's clinical condition, current medications, and allergies in addition to EMS resources and medical oversight
 ii. The numbering of medications below is not intended to indicate a hierarchy/preference of administration
 iii. Chemical restraints should be a later consideration for pediatric patients
 b. Antipsychotics
 i. Droperidol
 1. Adults:
 a. 2.5 mg IV; 10 minute onset of action, or
 b. 5 mg IM; 20 minute onset of action
 2. Pediatrics: Not routinely recommended
 ii. Haloperidol
 1. Adults:
 a. 5 mg IV; 5-10 minute onset of action, or
 b. 10 mg IM; 10-20 minute onset of action
 2. Pediatrics:
 a. Age 6-12 years: 1-3 mg IM (maximum dose 0.15 mg/kg)
 iii. Olanzapine
 1. Adults: 10 mg IM; 15-30 minute onset of action
 2. Pediatrics:
 a. Age 6-11 years: 5 mg IM (limited data available for pediatric use)
 b. Age 12-18 years: 10 mg IM
 iv. Ziprasidone
 1. Adults: 10 mg IM; 10 minute onset of action
 2. Pediatrics:
 a. Age 6-11 years: 5 mg IM (limited data available for pediatric use)
 b. Age 12-18 years: 10 mg IM
 c. Benzodiazepines
 i. Diazepam
 1. Adults:
 a. 5 mg IV; 2-5 minute onset of action, or
 b. 10 mg IM; 15-30 minute onset of action
 2. Pediatrics:
 a. 0.05-0.1 mg/kg IV, or
 b. 0.1-0.2 mg/kg IM
 ii. Lorazepam
 1. Adults:
 a. 2 mg IV; 2-5 minute onset of action, or
b. 4 mg IM; 15-30 minute onset of action

2. Pediatrics:
 a. 0.05 mg/kg IV, or
 b. 0.05 mg/kg IM

iii. Midazolam
 1. Adults:
 a. 5 mg IV; 3-5 minute onset of action, or
 b. 5 mg IM; 10-15 minute onset of action, or
 c. 5 mg IN; 3-5 minute onset of action
 2. Pediatrics:
 a. 0.05-0.1 mg/kg IV, or
 b. 0.1-0.15 mg/kg IM, or
 c. 0.3 mg/kg IN

d. Dissociative Agents (Provide Sedation and Anesthesia)
 i. Ketamine
 1. Adults:
 a. 2 mg/kg IV; 1 minute onset of action, or
 b. 4 mg/kg IM; 3-5 minute onset of action
 2. Pediatrics:
 a. 1 mg/kg IV, or
 b. 3 mg/kg IM

e. Antihistamines
 i. Diphenhydramine
 1. Pediatrics:
 a. 1 mg/kg IM/IV/PO (maximum dose of 25 mg)

3. Physical Restraints
 a. Body
 i. Stretcher straps should be applied as the standard procedure for all patients during transport
 ii. Sheets can be used as additional stretcher straps if necessary
 iii. Stretcher straps and sheets should never restrict the patient’s chest wall motion
 iv. Placement of stretcher straps or sheets (to prevent flexion/extension of torso, hips, legs) around:
 1. the lower lumbar region, below the buttocks, or
 2. the thighs, knees, and legs

b. Extremities
 i. Soft or leather restraint devices should not require a key to release them
 ii. Restrain all four extremities to maximize safety for patient, staff, and others
 iii. Restrain all extremities to the stationary frame of the stretcher
 iv. Multiple knots should not be used to secure the restraint device
Patient Safety Considerations

1. Don personal protective equipment (PPE)
2. Do not attempt to enter or control a scene where physical violence or weapons are present
3. Dispatch law enforcement immediately to secure and maintain scene safety
4. Urgent de-escalation of patient agitation is imperative in the interest of patient safety as well as for EMS personnel and others on scene
5. Uncontrolled or poorly controlled patient agitation and physical violence can place the patient at risk for sudden cardiopulmonary arrest due to the following etiologies:
 a. Excited delirium/exhaustive mania: A postmortem diagnosis of exclusion for sudden death thought to result from metabolic acidosis (most likely from lactate) stemming from physical agitation or physical control measures (including TASER®s) and potentially exacerbated by stimulant drugs (e.g. cocaine) or alcohol withdrawal
 b. Positional asphyxia: Sudden death from restriction of chest wall movement and/or obstruction of the airway secondary to restricted head or neck positioning resulting in hypercarbia and/or hypoxia
6. Apply a cardiac monitor as soon as possible, particularly when chemical restraints have been administered
7. All patients who have received chemical restraints must be monitored closely for the development of oversedation. Utilize capnography if available
8. Patients who have received antipsychotic medication as a chemical restraint must be monitored closely for the potential development of:
 a. Dystonic reactions (this can easily be treated with diphenhydramine/benzodiazepines)
 b. Mydriasis (dilated pupils)
 c. Ataxia
 d. Cessation of perspiration
 e. Dry mucous membranes
 f. Cardiac arrhythmias (particularly QT prolongation)
9. Placement of stretcher in sitting position prevents aspiration and reduces the patient’s physical strength by placing the abdominal muscles in the flexed position
10. Patients who are more physically uncooperative should be physically restrained in the lateral decubitus position (one arm above the head and the other arm below the waist), rather than the prone, to avoid airway compromise
11. Patients should never be transported while hobbled, “hog-tied”, or restrained in a prone position with hands and feet behind the back
12. Patients should never be transported while “sandwiched” between backboards or mattresses

Notes/Educational Pearls

Key considerations

1. Direct medical oversight should be contacted at any time for advice, especially when patient’s level of agitation is such that transport may place all parties at risk
2. Transport by air is not advised
3. Some chemical restraint medications are available in auto-injectors for rapid administration.

4. Stretchers with adequate foam padding, particularly around the head, facilitates patient’s ability to self-position the head and neck to maintain airway patency.

5. For patients with key-locking restraint devices, applied by another agency, consider the following options:
 a. Remove restraint device and replace it with a restraint device that does not require a key.
 b. Administer chemical restraints then remove and replace restraint device with another non-key-locking device after patient has become more cooperative.
 c. Transport patient, accompanied in patient compartment by person who has key for the device.
 d. Transport patient in vehicle of person with device key if medical condition of patient is deemed stable, direct medical oversight so authorizes, and law allows.

Pertinent assessment findings
Continuous monitoring of:
1. Airway patency
2. Respiratory status with pulse oximetry and/or capnography
3. Circulatory status with frequent blood pressure measurements
4. Mental status and trends in level of patient cooperation
5. Cardiac status, especially if the patient has received chemical restraints
6. Extremity perfusion with capillary refill in patients in physical restraints

Quality Improvement

Key Documentation Elements
1. Etiology of agitated or violent behavior if known
2. Patient’s medications, other medications or substances found on scene
3. Patient’s medical history or other historic factors reported by patient, family or bystanders
4. Physical evidence or history of trauma
5. Adequate oxygenation by pulse oximetry
6. Blood glucose measurement
7. Measures taken to establish patient rapport
8. Dose, route, and number of doses of chemical restraints administered
9. Clinical response to chemical restraints
10. Number and physical sites of placement of physical restraints
11. Duration of placement of physical restraints
12. Repeated assessment of airway patency
13. Repeated assessment of respiratory rate, effort, pulse oximetry/capnography
14. Repeated assessment of circulatory status with blood pressure, capillary refill, cardiac monitoring
15. Repeated assessment of mental status and trends in the level of patient cooperation
16. Repeated assessment of capillary refill in patient with extremity restraints

All Rights Reserved V.11-14
17. Communications with EMS direct medical oversight
18. Initiation and duration of engagement with law enforcement

Performance Measures
1. Incidence of injuries to patient, EMS personnel, or others on scene
2. Incidence of injuries to patient, EMS personnel, or others during transport
3. Medical or physical complications (including sudden death) in patients
4. Advance informational communication of EMS protocols for the management of agitated and violent patients to others within the emergency care system and law enforcement
5. Initiation and engagement with EMS direct medical oversight
6. Initiation and duration of engagement with law enforcement

References

Revision Date
September 15, 2014
Anaphylaxis and Allergic Reaction
(Adapted from an evidence-based guideline created using the National Prehospital Evidence-Based Guideline Model Process)

(9914111 – Allergic Reaction/Anaphylaxis)

Patient Care Goals
1. Provide timely therapy for potentially life-threatening reactions to known or suspected allergens to prevent cardiorespiratory collapse and shock
2. Provide symptomatic relief for symptoms due to known or suspected allergens

Patient Presentation

Inclusion Criteria
Patients of all ages with suspected allergic reaction

Exclusion Criteria
No specific recommendations

Patient Management

Assessment
1. Evaluate for patent airway and presence of oropharyngeal edema
2. Auscultate for wheezing and assess level of respiratory effort
3. Assess for adequacy of perfusion
4. Assess for presence of signs of anaphylaxis
5. Determine:
 a. Non-anaphylactic Allergic Reaction
 Symptoms involving only one organ system (i.e. localized angioedema that does not compromise the airway, or not associated with vomiting)
 b. Anaphylaxis - More severe and is characterized by an acute onset involving:
 i. The skin (urticaria) and/or mucosa with either respiratory compromise or decreased BP or signs of end-organ dysfunction,
 OR
 ii. Hypotension for that patient (systolic BP < 90 for adults; see Normal Vital Signs table, Appendix VII, for pediatric cut-offs) after exposure to a known allergen
 OR
 iii. Two or more of the following occurring rapidly after exposure to a likely allergen:
 1. Skin and/or mucosal involvement (urticaria, itchy, swollen tongue/lips)
 2. Respiratory compromise (dyspnea, wheeze, stridor, hypoxemia)
 3. Persistent gastrointestinal symptoms (vomiting, abdominal pain)
 4. Hypotension or associated symptoms (syncope, hypotonia, incontinence)

All Rights Reserved V.11-14
Treatment and Interventions
1. If signs of allergic reaction without signs of anaphylaxis, go to step 4
2. If signs of anaphylaxis, administer epinephrine (0.3 mg IM if > 25 kg; 0.15 mg IM if < 25 kg) via an epinephrine auto-injector, if available, in the anterolateral thigh
3. If signs of anaphylaxis are exhibited and an epinephrine auto-injector has not been administered and is not available, administer epinephrine 1:1,000 at the doses noted above
4. For urticaria or pruritus, administer an H1-blocking antihistamine (diphenhydramine 1 mg/kg, up to max dose of 50 mg IM, IV, or PO). The IV route is preferred for the patient in severe shock
5. For urticaria, any H2-blocking antihistamine (e.g. famotidine, cimetidine) can be given IV or PO in conjunction with an H1-blocking antihistamine
6. If respiratory distress with wheezing is present, consider administering inhaled albuterol (2.5-5 mg) and/or inhaled epinephrine (5 ml, 1:1,000). For stridor, consider administering inhaled epinephrine as noted above
7. If signs of anaphylaxis and hypoperfusion persist following the first dose of epinephrine, additional IM epinephrine can be repeated every 5-15 minutes at the doses noted above
8. For signs of hypoperfusion, also administer 20 ml/kg isotonic fluid (normal saline or lactated Ringer’s) rapidly (over 15 minutes) via IV or IO, and repeat as needed for ongoing hypoperfusion
9. Consider an epinephrine IV drip (0.5 mcg/kg/minute) when cardiovascular collapse (hypotension with altered mental status, pallor, diaphoresis and/or delayed capillary refill) is present despite repeated IM doses of epinephrine in conjunction with at least 60 ml/kg isotonic fluid boluses
10. Transport as soon as possible, and perform ongoing assessment as indicated. Cardiac monitoring is not required, but should be considered for those with known heart problems or who received multiple doses of epinephrine

Patient Safety Considerations
1. Time to epinephrine delivery
2. Concentration of epinephrine in relation to route
3. Use of epinephrine auto-injectors to reduce dosing errors
4. Weight-based dosing of medications

Notes/Educational Pearls
Key Considerations
1. Allergic reactions and anaphylaxis are serious and potentially life-threatening medical emergencies. It is the body’s adverse reaction to a foreign protein (i.e. food, medicine, pollen, insect sting or any ingested, inhaled, or injected substance). A localized allergic reaction (i.e. urticaria or angioedema that does not compromise the airway) may be treated with antihistamine therapy. When anaphylaxis is suspected, EMS personnel should always consider epinephrine as first-line treatment. Cardiovascular collapse may occur abruptly, without the prior development of skin or respiratory symptoms. Constant monitoring of the patient’s airway and breathing is essential
2. A thorough assessment and a high index of suspicion are required for all potential allergic reaction patients. Consider:
 a. History of Present Illness:
 i. Onset and location
 ii. Insect sting or bite
 iii. Food allergy/exposure
 iv. New clothing, soap, detergent
 v. Past history of reactions
 vi. Medication history
 b. Signs and Symptoms
 i. Itching or urticaria
 ii. Coughing, wheezing, or respiratory distress
 iii. Chest tightness or throat constriction
 iv. Hypotension or shock
 v. Persistent gastrointestinal symptoms (nausea, vomiting, and diarrhea)
 vi. Altered mental status
 c. Other Considerations
 i. Angioedema (drug-induced)
 ii. Aspiration/airway obstruction
 iii. Vasovagal event
 iv. Asthma or COPD
 v. Heart failure
3. Gastrointestinal symptoms occur most commonly in food-induced anaphylaxis, but can occur with other causes. Oral pruritus is often the first symptom observed in patients experiencing food-induced anaphylaxis. Abdominal cramping is also common, but nausea, vomiting, and diarrhea are frequently observed as well.
4. Contrary to common belief that all cases of anaphylaxis present with cutaneous manifestations, such as urticaria or mucocutaneous swelling, a significant portion of anaphylactic episodes may not involve these signs and symptoms on initial presentation. Moreover, most fatal reactions to food-induced anaphylaxis in children were not associated with cutaneous manifestations.
5. Patients with asthma are at high risk for a severe allergic reaction.
6. There is no proven benefit to using steroids in the management of allergic reactions and/or anaphylaxis.
7. There is controversy among experts with very low quality evidence to guide management for the use of empiric IM epinephrine after exposure to a known allergen in asymptomatic patients with a history of prior anaphylaxis.

Pertinent Assessment Findings
1. Presence or absence of angioedema
2. Presence or absence of respiratory compromise
3. Presence or absence of circulatory compromise
4. Localized or generalized urticaria
5. Response to therapy
Quality Improvement

Key Documentation Elements
1. Medications given
2. Dose and concentration of epinephrine given
3. Route of epinephrine administration
4. Time of epinephrine administration
5. Signs and symptoms of the patient

Performance Measures
1. Percentage of patients with anaphylaxis that receive epinephrine for anaphylaxis:
 a. Via the IM route (vs. other routes)
 b. Via the IM route in the anterolateral thigh (vs. other locations)
 c. Via an IM auto-injector (vs. IM without an auto-injector)
2. Percentage of patients with anaphylaxis who receive epinephrine within 10 minutes of arrival
3. Percentage of patients with anaphylaxis who receive the appropriate weight-based dose of epinephrine
4. Presence of auto-injectors in the 0.15 mg and 0.3 mg dosing formats, for use by both BLS and ALS providers
5. Percentage of patients that require airway management in the prehospital setting (and/or the emergency department)

References
5. Dahlof C, Mellstrand T, Svedmyr N. Systemic absorption of adrenaline after aerosol, eye-drop and subcutaneous administration to healthy volunteers. Allergy, 1987 42(3), 215-221
6. Hauswald M. Can paramedics safely decide which patients do not need ambulance transport or emergency department care? Prehosp Emerg Care, 2002 6(4), 383-386

Revision Date
September 15, 2014
Altered Mental Status

(9914113 – Altered Mental Status)

Patient Care Goals
1. Identify treatable causes
2. Protect patient from harm

Patient Presentation

Inclusion criteria
Impaired decision-making capacity

Exclusion criteria
Traumatic brain injury

Patient Management

Assessment
Look for treatable causes of altered mental status:
1. Airway: make sure airway can remain patent; reposition patient as needed
2. Breathing: look for respiratory depression; check SPO_2, ETCO_2, and CO detector readings
3. Circulation: look for signs of shock
4. Glasgow Coma Score and/or AVPU
5. Pupils
6. Neck rigidity or pain with range of motion
7. Stroke tool
8. Blood glucose level
9. EKG: arrhythmia limiting perfusion
10. Breath odor: possible unusual odors include alcohol, acidosis, ammonia
11. Chest/Abdominal: intra-thoracic hardware, assist devices, abdominal pain or distention
12. Extremities/skin: track marks, hydration, edema, dialysis shunt, temperature to touch (or if able, use a thermometer)
13. Environment: survey for pills, paraphernalia, ambient temperature

Treatment and Interventions
1. Oxygen (see Universal Care guideline for treatments)
2. Glucose (see **Hypoglycemia/Hyperglycemia** guideline for treatments)
3. Naloxone (see **Opioid Poisoning/Overdose** guideline for treatments)
4. Restraint: physical and chemical (see **Agitated or Violent Patient/Behavioral Emergency** guideline for treatments)
5. Anti-dysrhythmic medication (see **Cardiovascular Section** guidelines for specific dysrhythmia guidelines for treatments)
6. Active cooling or warming (see **Hypothermia/Cold Exposure or Hyperthermia/Heat Emergency** guidelines for treatments)
7. IV fluids (see fluid administration doses in **Shock** and **Hypoglycemia/Hyperglycemia** guidelines)
8. Vasopressors (see Shock guideline for treatments)

Patient Safety Considerations
With depressed mental status, initial focus is on airway protection, oxygenation, ventilation, and perfusion. The violent patient may need chemical and/or physical restraint to insure proper assessment and treatment. Hypoglycemic and hypoxic patients can be irritable and violent (see Agitated or Violent Patient/Behavioral Emergency guideline)

Notes/Educational Pearls

Key Considerations
1. History from bystanders
2. Age of the patient
3. Environment where patient found
4. Recent complaints (e.g. headache, chest pain, difficulty breathing, vomiting, fever)
5. Pill bottles/medications: anti-coagulants, anti-depressants, narcotic pain relievers, benzodiazepines
6. Medical alert tags and accessory medical devices
7. Toddlers should be evaluated for reduced PO intake and/or vomiting and/or diarrhea as a cause of AMS

Pertinent Assessment Findings
1. Track marks
2. Breath odor
3. Skin temperature
4. Location

Quality Improvement

Key Documentation Elements
1. GCS or AVPU description
2. Temperature was taken when able
3. Patient and medic safety were considered
4. Pupil and neck exam were done

Performance measures
1. Hypoglycemia considered and treated appropriately
2. Hypotension raised the possibility of sepsis
3. Hypotension appropriately treated
4. Naloxone is used as therapeutic intervention, not a diagnostic tool
5. CO detector is used when available

References

All Rights Reserved V.11-14

Revision Date
September 15, 2014
Hypoglycemia/Hyperglycemia

(9914125 – Hypoglycemia/Diabetic Emergency; 9914121 – Hyperglycemia)

Patient Care Goals
Limit morbidity from hypoglycemia and hyperglycemia by:
1. Describing appropriate use of glucose monitoring
2. Treating symptomatic hypoglycemia
3. Appropriate hydration for hyperglycemia

Patient Presentation

Inclusion Criteria
1. Adult or pediatric patient with blood glucose < 60 mg/dl with symptoms of hypoglycemia
2. Adult or pediatric patient with altered level of consciousness (also see *Altered Mental Status* guideline)
3. Adult or pediatric patient with stroke symptoms (e.g. hemiparesis, dysarthria; also see *Suspected Stroke/Transient Ischemic Attack* guideline)
4. Adult or pediatric patient with seizure [Also see *Seizures* guideline]
5. Adult or pediatric patient with symptoms of hyperglycemia (e.g. polyuria, polydipsia, weakness, dizziness)
6. Adult or pediatric patient with history of diabetes and other medical symptoms
7. Pediatric patient with suspected alcohol ingestion

Exclusion Criteria
Patient in cardiac arrest

Patient Management

Assessment
1. Monitoring:
 Obtain point of care blood glucose level
2. Secondary survey pertinent to altered blood glucose level:
 a. Constitutional: assess for tachycardia and hypotension
 b. Eyes: assess for sunken eyes from dehydration
 c. Nose /mouth/ears: assess for dry mucus membranes or tongue bite from seizure
 d. Neurologic:
 i. Assess GCS and mental status
 ii. Assess for focal neurologic deficit: motor and sensory

Treatment and Interventions
1. If altered level of consciousness or stroke, also follow *Altered Mental Status* or *Suspected Stroke/Transient Ischemic Attack* guidelines accordingly
2. If hypoglycemia (glucose < 60 mg/dl) with related symptoms; administer one of the following to increase blood sugar:
 a. Glucose, oral (in form of glucose tablets, glucose gel, tube of cake icing, etc.)
 i. Avoid oral glucose in patients that are unable to swallow or maintain airway
 ii. Adult Dosing: 25 gm
iii. Pediatric Dosing: 0.5-1 gm/kg

b. Dextrose IV
 i. Adult Dosing: 25 gm of 10-50% dextrose IV
 1. 50 ml of 50% dextrose
 2. 100 ml of 25% dextrose
 3. 250 ml of 10% dextrose
 ii. Pediatric Dosing: 0.5-1 gm/kg of 10-25% dextrose IV
 1. 2 – 4 ml/kg of 25% dextrose
 2. 4 – 8 ml/kg of 12.5% dextrose
 3. 5 – 10 ml/kg of 10% dextrose

c. Glucagon IM/IN
 i. Adult Dosing: 1 mg IM/IN
 ii. Pediatric Dosing: 1 mg IM/IN if ≥ 20 kg (or ≥ 5 yo)
 0.5 mg IM/IN if < 20 kg (or < 5 yo)

3. If hyperglycemia (glucose > 250 mg/dl) with symptoms of dehydration, vomiting, or altered level of consciousness:
 a. Volume expansion with normal saline bolus
 i. Adult: Normal saline 1 L bolus IV; reassess and rebolus 1 L if indicated
 ii. Pediatric: Normal saline 10 ml/kg bolus IV, reassess and repeat up to 40 ml/kg total

4. Reassess patient
 a. Reassess vital signs, mental status, and indications of dehydration
 b. Repeat point of care blood glucose level indicated if previous hypoglycemia and mental status has not returned to normal
 i. It is not necessary to repeat blood sugar if mental status has returned to normal
 ii. It is not necessary to repeat blood glucose level if initial hyperglycemia
 c. If continued altered mental status and hypoglycemia, give additional dextrose or glucagon using initial dosing

5. Disposition
 a. If hyperglycemia, transport to closest appropriate receiving facility
 b. If hypoglycemia with continued symptoms, transport to closest appropriate receiving facility
 c. If hypoglycemia with resolved symptoms, consider release without transport if all of the following are true:
 i. Repeat glucose is > 80 mg/dl
 ii. Patient takes insulin
 iii. Patient does NOT use oral medications to control blood glucose
 iv. Patient returns to normal mental status, with no focal neurologic signs/symptoms after receiving glucose/dextrose
 v. Patient can promptly obtain and will eat a carbohydrate meal
 vi. Patient refuses transport or patient and EMS providers agree transport not indicated
 vii. A reliable adult will be staying with patient
 viii. No major co-morbid symptoms exist, like chest pain, shortness of breath, seizures, intoxication, also received naloxone
 ix. Patient or legal guardian refuses transport
Patient Safety Considerations
1. Dextrose 50% can cause local tissue damage if it extravasates from vein. EMS systems may consider carrying no more than 25% concentration of dextrose for treating hypoglycemia in adults.
2. For children < 8 years of age, dextrose 25% should be used.
3. For neonates and infants < 1 month of age, dextrose 10-12.5% should be used.

Notes/Educational Pearls
A formula for calculating a 0.5 gm/kg dose of IV dextrose is:

\[
\frac{50}{\%\text{ concentration of glucose}} = \text{ml/kg}
\]

For example:

<table>
<thead>
<tr>
<th>Desired Dose</th>
<th>Fluid type</th>
<th>ml of fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5g/kg</td>
<td>25% dextrose</td>
<td>2mL/kg</td>
</tr>
<tr>
<td></td>
<td>12.5% dextrose</td>
<td>4mL/kg</td>
</tr>
<tr>
<td></td>
<td>10% dextrose</td>
<td>5mL/kg</td>
</tr>
<tr>
<td>1g/kg</td>
<td>25% dextrose</td>
<td>4mL/kg</td>
</tr>
<tr>
<td></td>
<td>12.5% dextrose</td>
<td>8mL/kg</td>
</tr>
<tr>
<td></td>
<td>10% dextrose</td>
<td>10mL/kg</td>
</tr>
</tbody>
</table>

Key Considerations
1. Consider contribution of oral diabetic medications to hypoglycemia
2. If possible, have family/patient turn off insulin pumps
3. Consider potential for intentional overdose of hypoglycemic agents

Pertinent Assessment Findings
1. Concomitant trauma
2. Diaphoresis or hypothermia may be associated with hypoglycemia

Quality Improvement

Key Documentation Elements
1. Document reassessment of vital signs and mental status after administration of glucose/dextrose/glucagon
2. Document point of care glucose level (if in scope of practice) when indicated
Performance Measures

1. When in scope of practice, point of care blood glucose checked for all patients with symptoms of altered level of consciousness, seizure, stroke, or hyperglycemia
2. Within scope of practice, oral glucose or parenteral dextrose/glucagon given when indicated
3. When hyperglycemia documented, appropriate volume replacement given while avoiding overzealous repletion before insulin therapy at receiving center
4. If patient released at scene, criteria documented for safe release

References

Revision date

September 15, 2014
Pain Management
(Incorporates elements of an evidence-based guideline for prehospital analgesia in trauma created using the National Prehospital Evidence-Based Guideline Model Process)

(9914071 – Pain Control)

Patient Care Goals
The practice of prehospital emergency medicine requires expertise in a wide variety of pharmacological and non-pharmacological techniques to treat acute pain resulting from myriad injuries and illnesses. One of the most essential missions for all healthcare providers should be the relief and/or prevention of pain and suffering. Approaches to pain relief must be designed to be safe and effective in the organized chaos of the prehospital environment. The degree of pain and the hemodynamic status of the patient will determine the rapidity of care.

Patient Presentation

Inclusion Criteria
Patients who are experiencing pain

Exclusion Criteria
1. Patients who are allergic to narcotic medications
2. Patients who have altered mentation (GCS < 15 or mentation not appropriate for age)

Patient Management

Assessment, Treatment and Interventions
1. Apply a pulse oximeter and administer oxygen as needed to maintain an O_2 saturation ≥ 94
2. Determine patient’s pain score assessment using standard pain scale.
 a. < 4 years: Observational scale (e.g. Faces, Legs, Arms, Cry, Consolability (FLACC) or Children’s Hospital of Eastern Ontario Pain Scale (CHEOPS)
 b. 4-12 years: Self-report scale (e.g. Wong Baker Faces, Faces Pain Scale (FPS), Faces Pain Scale Revised (FPS-R)
 c. > 12 years: Self-report scale (Numeric Rating Scale (NRS)
3. Place patient on cardiac monitor per patient assessment
4. If available, consider use of non-pharmaceutical pain management techniques
 a. Placement of the patient in a position of comfort
 b. Application of ice packs and/or splints for pain secondary to trauma
 c. Verbal reassurance to control anxiety
5. If not improved, consider use of analgesics as available and as permitted by direct medical oversight
 a. Acetaminophen 15 mg/kg PO (maximum dose 1 gm)
 b. Ibuprofen 10 mg/kg PO for patients greater than 6 months of age (maximum dose 800 mg)
 c. Fentanyl 1 mcg/kg IN or IM
d. Ketorolac – Adult: 60 mg IM in adults who are not pregnant
 Pediatric: (2-16 years) 1mg/kg IM (maximum dose 30 mg)
 Geriatric/Renal impairment: 1mg/kg IM (maximum dose 30 mg)

e. Morphine sulfate 0.1 mg/kg (maximum dose 15 mg)

f. Nitrous Oxide

6. Establish IV of normal saline per patient assessment

7. If the patient is experiencing significant pain, administer IV analgesics
 a. Ketorolac - Adult: 30 mg IV in adults who are not pregnant
 Pediatric: (2-16 years) 0.5mg/kg (maximum dose 15 mg)
 Geriatric/Renal impairment: 0.5mg/kg (maximum dose 15 mg)

 b. Morphine sulfate 0.1 mg/kg IV or IO

 c. Fentanyl 1 mcg/kg IV or IO

8. Consider administration of oral, sublingual, or IV antiemetics to prevent nausea in high risk patients. See Nausea/Vomiting guideline

9. If indicated based on pain assessment, repeat pain medication administration after 10 minutes of the previous dose

10. Transport in position of comfort and reassess as indicated
Universal Pain Assessment Tool

<table>
<thead>
<tr>
<th>Verbal Descriptor Scale</th>
<th>No pain</th>
<th>Mild pain</th>
<th>Moderate pain</th>
<th>Severe pain</th>
<th>Very severe pain</th>
<th>Excruciating Pain</th>
</tr>
</thead>
</table>

Wong-Baker FACES Pain Rating Scale

<table>
<thead>
<tr>
<th>Scale</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Hurt</td>
<td>Hurts Little Bit</td>
<td>Hurts Little More</td>
<td>Hurts Even More</td>
<td>Hurts Whole Lot</td>
<td>Hurts Worst</td>
<td></td>
</tr>
</tbody>
</table>

Descriptive Scale

<table>
<thead>
<tr>
<th>Alert</th>
<th>Smiling</th>
<th>No Humor</th>
<th>Serious, Flat</th>
<th>Furrowed brow</th>
<th>Pursed lips</th>
<th>Breath holding</th>
<th>Wrinkled nose</th>
<th>Raised upper lip</th>
<th>Rapid breathing</th>
<th>Slow blink</th>
<th>Open mouth</th>
<th>Eyes closed</th>
<th>Moaning</th>
<th>Crying</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Activity Tolerance Scale

<table>
<thead>
<tr>
<th>No pain</th>
<th>Can be ignored</th>
<th>Interferes with tasks</th>
<th>Interferes with concentration</th>
<th>Interferes with basic needs</th>
<th>Bed rest required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spanish</th>
<th>Nada de dolor</th>
<th>Un poquito de dolor</th>
<th>Un dolor leve</th>
<th>Dolor fuerte</th>
<th>Dolor demasiado fuerte</th>
<th>Un dolor insoportable</th>
</tr>
</thead>
</table>

Source: Hybrid of scales by authors. Wong-Baker FACES Pain Rating Scale license granted for this use. Reproduction of the Wong-Baker material requires licensing at www.wongbakerFACES.org.
Here are two examples of pediatric-appropriate pain assessment tools

- The Face, Legs, Activity, Cry, Consolablity (FLACC) Scale for 0-3 Year Olds
- The Faces Pain Scale - Revised for 4-12 year olds

FLACC SCALE

<table>
<thead>
<tr>
<th>Categories</th>
<th>Scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>FACE</td>
<td>No particular expression or smile</td>
</tr>
<tr>
<td></td>
<td>Occasional grimace or frown, withdrawn,</td>
</tr>
<tr>
<td></td>
<td>disinterested.</td>
</tr>
<tr>
<td></td>
<td>Frequent to constant quivering chin, clenched</td>
</tr>
<tr>
<td></td>
<td>jaw.</td>
</tr>
<tr>
<td>LEGS</td>
<td>Normal position or relaxed.</td>
</tr>
<tr>
<td></td>
<td>Uneasy, restless, tense.</td>
</tr>
<tr>
<td></td>
<td>Kicking, or legs drawn up.</td>
</tr>
<tr>
<td>ACTIVITY</td>
<td>Lying quietly, normal position moves easily.</td>
</tr>
<tr>
<td></td>
<td>Squirming, shifting back and forth, tense.</td>
</tr>
<tr>
<td></td>
<td>Arched, rigid or jerking.</td>
</tr>
<tr>
<td>CRY</td>
<td>No cry, (awake or asleep)</td>
</tr>
<tr>
<td></td>
<td>Moans or whimpers; occasional complaint</td>
</tr>
<tr>
<td></td>
<td>Crying steadily, screams or sobs, frequent</td>
</tr>
<tr>
<td></td>
<td>complaints.</td>
</tr>
<tr>
<td>CONSOLABILITY</td>
<td>Content, relaxed.</td>
</tr>
<tr>
<td></td>
<td>Reassured by occasional touching hugging or</td>
</tr>
<tr>
<td></td>
<td>being talked to, distractable.</td>
</tr>
<tr>
<td></td>
<td>Difficulty to console or comfort</td>
</tr>
</tbody>
</table>

Patient Safety Considerations

1. All patients should have drug allergies identified prior to administration of pain medication
2. Administer narcotics with caution to patients with GCS < 15, hypotension, identified medication allergy, hypoxia (oxygen saturation < 90%) after maximal supplemental oxygen therapy, or signs of hypoventilation
3. Fentanyl is contraindicated for patients who have taken monoamine oxidase inhibitors (MAOI) during the previous 14 days
4. Non-steroidal anti-inflammatory medications should not be administered to pregnant patients
5. Avoid Ketorolac in patients with NSAID allergy, aspirin-sensitive asthma, renal insufficiency, pregnancy, or known peptic ulcer disease

Notes/Educational Pearls

Key Considerations

1. Pain severity (0 - 10) should be recorded before and after analgesic medication administration and upon arrival at destination
2. Narcotic analgesia was historically contraindicated in the prehospital setting for abdominal pain of unknown etiology. It was thought that analgesia would hinder the emergency physician’s or surgeon’s evaluation. Recent studies have demonstrated that opiate administration may alter the physical examination findings, but these changes result in no significant increase in management errors.

3. Opiates may cause a rise in intracranial pressure.

Pertinent Assessment Findings
1. Mental status (GCS and pain level)
2. Respiratory system (tidal volume, chest rigidity)
3. Gastrointestinal (assess for tenderness, rebound, guarding, and nausea)

Quality Improvement

Key Documentation Elements
1. Documentation of patient vital signs with pulse oximetry
2. Acquisition of patient’s allergies prior to administration of medication
3. Documentation of initial patient pain scale assessment
4. Documentation of medication administration with correct dose
5. Documentation of patient reassessment with repeat vital signs and patient pain scale assessment

Performance Measures
1. The clinical efficacy of prehospital analgesia in terms of adequacy of dosing parameters
2. The utilization of alternate medications for patients with drug allergies or during emergency care drug shortages

References

Revision Date
September 15, 2014
Seizures

(Adapted from an evidence-based guideline created using the National Prehospital Evidence-Based Guideline Model Process)

(9914141 – Seizure)

Patient Care Goals
1. Cessation of seizures in the prehospital setting
2. Minimizing adverse events in the treatment of seizures in the prehospital setting
3. Minimizing seizure recurrence during transport

Patient Presentation
Inclusion Criteria
Seizure activity upon arrival of prehospital personnel or new/recurrent seizure activity lasting > 5 minutes

Exclusion Criteria
None - (seizures due to trauma, pregnancy, hyperthermia, or toxic exposure should be managed according to those condition-specific guidelines)

Patient Management
Assessment
1. History
 a. Duration of current seizure
 b. Prior history of seizures, diabetes, or hypoglycemia
 c. Typical appearance of seizures
 d. Baseline seizure frequency and duration
 e. Concurrent symptoms of apnea, cyanosis, vomiting, bowel/bladder incontinence, or fever
 f. Bystander administration of medications to stop the seizure
 g. Current medications, including anticonvulsants
 h. Recent dose changes or non-compliance with anticonvulsants
 i. History of trauma, pregnancy, heat exposure, or toxin exposure
2. Exam
 a. Air entry/airway patent?
 b. Breath sounds, respiratory rate and effectiveness of ventilation
 c. Signs of perfusion (pulses, capillary refill, color)
 d. Neurologic status (GCS, nystagmus, pupil size)

Treatment and Interventions
1. If signs of airway obstruction are present and a chin-lift, jaw thrust, and/or suctioning does not alleviate it, place oropharyngeal airway (if gag reflex is absent) or nasopharyngeal airway. Place pulse oximeter and/or waveform capnography to monitor oxygenation/ventilation
2. Apply oxygen via face mask or non-rebreather mask. Administer bag-valve mask ventilation if oxygenation/ventilation are compromised
3. Assess signs of perfusion
4. Assess neurologic status
5. Routes for Treatment
 Buccal, intranasal, or intramuscular routes for benzodiazepines are preferred as first line for administration of anticonvulsants. Rectal administration of anticonvulsants is not recommended. Intravenous (IV) placement is not necessary for treatment of seizures, but could be obtained if needed for other reasons
6. Anticonvulsant Treatment
 a. 0.2 mg/kg (maximum dose 10 mg) buccal, intramuscular or intranasal midazolam is preferred over rectal diazepam
 b. If IV routes are utilized, 0.1 mg/kg (maximum dose 4 mg) of diazepam, lorazepam, or midazolam may be used
 c. Recent evidence supports the use of IM midazolam as an intervention that is at least as safe and effective as intravenous lorazepam for prehospital seizure cessation
7. Glucometry
 a. If still actively seizing, check capillary blood glucose level
 b. If < 60 mg/dl, refer to Hypoglycemia/Hyperglycemia guideline for treatment recommendations
8. Consider magnesium sulfate, 4 grams IV over 5 minutes in the presence of seizure in the third trimester of pregnancy or post-partum

Patient safety considerations
1. Trained personnel should be able to give medication without contacting direct medical oversight. However, more than two doses of benzodiazepines are associated with high risk of airway compromise. Use caution, weigh risks/benefits of deferring treatment until hospital, and/or consider consultation with direct medical oversight if patient has received two doses of benzodiazepines by bystanders and/or prehospital providers
2. Hypoglycemic patients who are treated in the field for seizure should be transported to hospital, regardless of whether or not they return to baseline mental status after treatment

Notes/Educational Pearls
Key Considerations
1. Many airway/breathing issues in seizing patients can be managed without intubation or placement of an advanced airway. Reserve these measures for patients that fail less invasive maneuvers as noted above
2. For children with convulsive status epilepticus requiring medication management in the prehospital setting, trained EMS personnel should be allowed to administer medication without direct medical oversight
3. For new onset seizures or seizures that are refractory to treatment, consider other potential causes including trauma, stroke, electrolyte abnormality, toxic ingestion, pregnancy, hyperthermia
4. A variety of safe and efficacious doses for benzodiazepines have been noted in the literature for seizures. The doses for anticonvulsant treatment noted above are those that are common to the forms and routes of benzodiazepines noted in this guideline. One dose, rather than a range, has been suggested in order to standardize a common dose in situations
when an EMS agency may need to switch from one type of benzodiazepine to another due to cost or resource limitations

Pertinent Assessment Findings
The presence of fever with seizure in children < 6 months old and > 6 years old is **not** consistent with a simple febrile seizure, and should be concerning for meningitis or encephalitis

Quality Improvement

Key Documentation Elements
1. Actively seizing during transport and time of seizure onset/cessation
2. Concurrent symptoms of apnea, cyanosis, vomiting, bowel/bladder incontinence, or fever
3. Medication amounts/routes given by bystanders or prehospital providers
4. Neurologic status (GCS, nystagmus, pupil size)

Performance Measures
- Frequency of performing glucometry
- Time to administration of anticonvulsant medication
- Rate of respiratory failure
- Rate of seizure recurrence

References

39. Leppik IE, Derivan AT, Homann RW, Walker J, Ramsay RE, Patrick B. Double-blind study of lorazepam and diazepam in status epilepticus. JAMA, 249(11);1452-1454

Revision Date
September 15, 2014
Adapted from the following article: Shah MI, Macias CG, Dayan PS, et al. An Evidence-Based Guideline for Pediatric Prehospital Seizure Management Using GRADE Methodology. Prehospital Emergency Care, 2014 18(Suppl1): 15-24

All Rights Reserved V.11-14
Shock

(Adapted from an evidence-based guideline created using the National Prehospital Evidence-Based Guideline Model Process)

(9914127 – Hypotension/Shock (Non-trauma))

Patient Care Goals
1. Initiate early fluid resuscitation and vasopressors to maintain/restore adequate perfusion to vital organs
2. Differentiate between possible underlying causes of shock in order to promptly initiate additional therapy

Patient Presentation

Inclusion Criteria
1. Signs of poor perfusion (due to a medical cause) such as one or more of the following:
 a. Altered mental status
 b. Delayed/flash capillary refill
 c. Hypoxia (pulse oximetry < 94%)
 d. Decreased urine output
 e. Respiratory rate > 20 in adults or elevated in children (see normal vital signs table)
 f. Hypotension for age (lowest acceptable systolic blood pressure in mm Hg):
 i. < 1 year: 60
 ii. 1-10 years: (age in years)(2)+70
 iii. > 10 years: 90
 g. Tachycardia for age, out of proportion to temperature (see Normal Vital Signs table, Appendix VII)
 h. Weak, decreased or bounding pulses
 i. Cool/mottled or flushed/ruddy skin
2. **AND** potential etiologies of shock:
 a. Hypovolemia (poor fluid intake, excessive fluid loss (e.g. bleeding, SIADH, hyperglycemia excessive diuretics, vomiting, diarrhea)
 b. Sepsis (temperature instability: < 36 C or 96.8 F; > 38.5 C or 101.3 F; and/or tachycardia, warm skin, tachypnea)
 c. Anaphylaxis (urticaria, nausea/vomiting, facial edema, wheezing)
 d. Signs of heart failure (hepatomegaly, rales on pulmonary exam, extremity edema, JVD)

Exclusion Criteria
Shock due to suspected trauma (see Trauma section guidelines)

Patient Management

Assessment
1. History
 a. History of GI bleeding
 b. Cardiac problems
c. Stroke
d. Fever
e. Nausea/vomiting, diarrhea
f. Frequent or no urination
g. Syncopal episode
h. Allergic reaction
i. Immunocompromise (malignancy, transplant, asplenia)
j. Adrenal insufficiency
k. Presence of a central line
l. Other risk of infection (spina bifida or other genitourinary anatomic abnormality)

2. Exam
 a. Airway/breathing (airway edema, rales, wheezing, pulse oximetry, respiratory rate)
 b. Circulation (heart rate, blood pressure, capillary refill)
 c. Abdomen (hepatomegaly)
 d. Mucous membrane hydration
 e. Skin (turgor, rash)
 f. Neurologic (GCS, sensorimotor deficits)

3. Determination of type of shock
 a. Cardiogenic
 b. Distributive (neurogenic, septic, anaphylactic)
 c. Hypovolemic
 d. Obstructive (e.g. pulmonary embolism, cardiac tamponade, tension pneumothorax)

Treatment and Interventions
1. Check full vital signs
2. Administer oxygen (titrate oxygen to SPO₂ ≥ 94%)
3. Cardiac monitor
4. Pulse oximetry
5. Check blood sugar, and correct if < 60 mg/dl
6. EKG
7. Check lactate, if available (> 2.5 mmol/L is abnormal)
8. Antipyretics for fever
 a. Acetaminophen (15 mg/kg; max dose of 1000 mg)
 b. Ibuprofen (10 mg/kg; max dose of 800 mg)
9. Establish IV access; if unable to obtain within 2 attempts or < 90 seconds, place an IO needle
10. IV fluids (20 ml/kg isotonic fluid; max of 1 liter) over < 15 minutes, using a push-pull method of drawing up the fluid in a syringe and pushing it through the IV. May repeat up to 3 times
11. If there is a history of adrenal insufficiency, give:
 a. Hydrocortisone succinate, 2 mg/kg (max 100 mg) IV/IM (preferred) or
 b. Methylprednisolone 2 mg/kg IV (max 125 mg)
12. Vasopressors (shock unresponsive to IV fluids)
 a. Cardiogenic shock, hypovolemic shock, obstructive shock:
 • Give dopamine, 2-20 mcg/kg/minute
 • Give epinephrine, 0.05-0.3 mcg/kg/minute
• Norepinephrine - there is recent evidence that supports the use of norepinephrine as the preferred intervention (initial dose: 0.5 – 1 mcg/minute titrated to effect. For patients in refractory shock: 8-30 mcg/minute)

b. Distributive shock (with the exception of anaphylactic shock):
• Give norepinephrine, 0.05-0.5 mcg/kg/minute
• Norepinephrine is the first-line drug of choice for neurogenic shock
• For anaphylactic shock see Anaphylaxis and Allergic Reaction guideline

13. Provide advanced notification to the hospital
14. Consider empiric antibiotics for suspected septic shock if transport time is anticipated to be > 1 hour, if blood cultures can be obtained in advance, and/or EMS has coordinated with regional receiving hospitals about choice of antibiotic therapy.

Patient Safety Considerations
Recognition of cardiogenic shock: if patient condition deteriorates after fluid administration, rales or hepatomegaly develop, then consider cardiogenic shock and holding further fluid administration

Notes/Educational Pearls
Key Considerations
1. Early, aggressive IV fluid administration is essential in the treatment of suspected shock
2. Patients predisposed to shock:
 a. Immunocompromised (patients undergoing chemotherapy or with a primary or acquired immunodeficiency)
 b. Adrenal insufficiency (Addison's disease, congenital adrenal hyperplasia, chronic or recent steroid use)
 c. History of a solid organ or bone marrow transplant
 d. Infants
 e. Elderly
3. Tachycardia is the first sign of compensated shock, and may persist for hours. Hypotension indicates uncompensated shock, which may progress to cardiopulmonary failure within minutes
4. Hydrocortisone succinate, if available, is preferred over methylprednisolone and dexamethasone for the patient with adrenal insufficiency, because of its dual glucocorticoid and mineralocorticoid effects. Patients with no reported history of adrenal axis dysfunction may have adrenal suppression due to their acute illness, and hydrocortisone should be considered for any patient showing signs of treatment-resistant shock. Patients with adrenal insufficiency may have an emergency dose of hydrocortisone available that can be administered IV or IM

Pertinent Assessment Findings
Decreased perfusion manifested by altered decreased mental status, decreased urine output (< 1 ml/kg/hr) or abnormalities in capillary refill or pulses:
1. Cardiogenic, hypovolemic, obstructive shock: capillary refill >2 seconds, diminished peripheral pulses, mottled cool extremities
2. Distributive shock: flash capillary refill, bounding peripheral pulses
Quality Improvement

Key Documentation Elements
1. Medications administered
2. Full vital signs with reassessment every 15 minutes or as appropriate
3. Lactate level
4. Neurologic status assessment (see Appendix VI)
5. Amount of fluids given

Performance Measures
1. Percentage of patients who have full vital signs (HR, RR, BP, T, O2) documented
2. Presence of a decision support tool (laminated card, a protocol, or electronic alert) to identify patients in shock
3. Percentage of patients with suspected shock for whom advanced notification to the hospital was provided
4. Mean time from abnormal vitals to initiation of a fluid bolus
5. Percentage of patients who receive pressors for ongoing hypotension after receiving 60 ml/kg isotonic fluid in the setting of shock

References

2. Band, RA, Gaisesi DF, Hylton JH, Shofer FS, Goyal M, Meisel ZF. Arriving by emergency medical services improves time to treatment endpoints for patients with severe sepsis or septic shock. Acad Emerg Med, 2011 18(9), 934-940

Revision Date
September 15, 2014
Resuscitation

Cardiac Arrest (VF/VT/Asystole/PEA)

(9914011 – Cardiac Arrest-Asystole; 99014013 – Cardiac Arrest-Hypothermia-Therapeutic; 9914015 – Cardiac Arrest-Pulseless Electrical Activity; 9914017 – Cardiac Arrest-Ventricular Fibrillation/Pulseless Ventricular Tachycardia)

Patient Care Goals

1. Return of spontaneous circulation (ROSC)
2. Preservation of neurologic function

Inclusion Criteria

Patients with cardiac arrest

Exclusion Criteria

Include the following:
1. Patients suffering cardiac arrest due to severe hypothermia (see Hypothermia/Cold Exposure guideline)
2. Patients with identifiable Do Not Resuscitate (or equivalent such as POLST) order (see Terminating or Not Starting Resuscitation Due to DO Not Resuscitate/Advance Directive/Healthcare Power of Attorney (POA) guideline)
3. Patients with transient loss of consciousness and presence of pulses upon EMS evaluation (see Syncope/Pre-syncope guideline)
4. Patients in arrest due to traumatic etiology (see General Trauma Management guideline)

Patient Management

Assessment

The patient in cardiac arrest requires a prompt balance of treatment and assessment. In cases of cardiac arrest, assessments should be focused and limited to obtaining enough information to reveal the patient is pulseless. Once pulselessness is discovered, treatment should be initiated immediately and any further history must be obtained by bystanders while treatment is ongoing.

Treatment and Interventions

The most important therapies for patients suffering from cardiac arrest are prompt cardiac defibrillation and effective chest compressions

1. Initiate chest compressions in cases with no bystander chest compressions, or take over compressions from bystanders while a second rescuer is setting up the AED or defibrillator.
 a. If adequate, uninterrupted bystander CPR has been performed or if the patient arrests in front of the EMS providers, immediately proceed with rhythm analysis and defibrillation, if appropriate
 b. If no compressions and the arrest was not witnessed by EMS providers, perform chest compressions at a rate of 100-120/minute, followed by rhythm analysis and defibrillation, if appropriate. In the unwitnessed arrest, chest compressions are
commonly the most rapidly applied therapy and should be instituted immediately in an effort to minimize the “no flow” state of cardiac arrest

2. All efforts should be instituted to create a “low flow” state (through effective chest compressions) or “normal flow” state through return of spontaneous circulation (via defibrillation or other treatment)

3. Defibrillation should be at the maximum output of the defibrillator, based on manufacturer’s recommendations, up to 360 joules (or 4 J/kg for pediatric patients), for initial and subsequent defibrillation attempts

4. Chest compressions should resume immediately after defibrillation attempts with no pauses for pulse checks

5. All attempts should be made to prevent avoidable interruptions in chest compressions, such as pre-charging the defibrillator and hovering over the chest, rather than stepping away during defibrillations

6. IV access should be obtained within the first 2-minute period of chest compressions and Epinephrine 1 mg (0.01 mg/kg for pediatrics) IV should be provided every 3-5 minutes starting with the first or second round of chest compressions. The first or second dose of epinephrine may be substituted by vasopressin 40 units IV (except in pediatrics)

7. Continue the cycle of chest compressions for 2 minutes, followed by rhythm analysis and defibrillation of shockable rhythms. During this period of time, the proper strategy of airway management is currently not defined and many options for airway management exist. Regardless of the airway management strategy, consider the following principles:
 a. The airway management strategy should not interrupt compressions
 b. Consider ventilation rates between 8-10 breaths/minute
 If no advanced airway, consider either a 15:1 or 30:2 ventilation to compression ratio. For pediatrics a ratio of 15:2 should be used when 2 rescuers are present. Once advanced airway is applied, ventilations should not exceed 8-10 breaths/minute
 c. Consider limited tidal volumes. For neonates and young children, an adult sized BVM may be used as long as a proper mask size and tidal volume are utilized

8. Consider use of antidysrhythmic for recurrent VF/Pulseless VT
 a. Amiodarone 300 mg (or 5 mg/kg for pediatrics) IV, (Amiodarone may be repeated once at a dose of 150 mg in adults and twice for pediatrics, up to a maximum of 15 mg/kg or 300 mg), or
 b. Lidocaine – Initial dose is 1.0 - 1.5 mg/kg (or 1 mg/kg for pediatrics, although amiodarone is preferred for pediatrics) IV (Lidocaine may be repeated every 5-10 minutes at a dose of 0.5 - 0.75 mg/kg IV up to a total dose of 3 mg/kg. For pediatrics, the maximum total dose is 1 mg/kg), or
 c. For torsades de pointes, magnesium sulfate 2 g (or 25-50 mg/kg for pediatrics) IV

9. Consider reversible causes of cardiac arrest which include the following:
 a. Hypothermia – additions to care include attempts at active rewarming. Refer to Hypothermia/Cold Exposure guideline.
 b. The dialysis patient/known hyperkalemic patient – Additions to care include the following:
 i. Calcium chloride 10% 10ml IV (for pediatrics, the dose is 20 mg/kg which is 0.2 ml/kg)
 ii. Sodium Bicarbonate 1 mEq/kg IV
 c. Tricyclic antidepressant overdose - Additions to care include the following:
Sodium bicarbonate 1 mEq/kg IV
d. Hypovolemia - Additions to care include the following:
 Normal saline 2 L IV (or 20 ml/kg, repeated up to 3 times for pediatrics)
e. If the patient is intubated at the time of arrest, assess for tension pneumothorax and
 misplaced ETT. If tension pneumothorax suspected, perform needle decompression.
 Assess ETT, if misplaced, replace ETT
10. If at any time during this period of resuscitation the patient regains return of spontaneous
 circulation, proceed to the Adult Post-ROSC Care guideline
11. If resuscitation remains ineffective, consider termination of resuscitation (see Termination of
 Resuscitative Efforts guideline)

Patient Safety Considerations
It is not safe for the patient or providers to perform chest compressions during transport. Chest
compressions during patient movement are less effective in regards to hands on time, depth,
recoil and rate and providers performing chest compressions in a moving vehicle are at risk for
injury. Therefore, patients should be resuscitated as close to the scene as operationally possible

Notes/Educational Pearls

Key Considerations
1. Effective chest compressions and defibrillation are the most important therapies to the
 patient in cardiac arrest. Effective chest compressions are defined as:
 a. A rate of greater than 100 and less than 120 compressions/minute
 b. Depth of at least 2 inches (5 cm) for adults and children or 1.5 inches (4 cm) for infants
 c. Allow for complete chest recoil
 d. Minimize interruptions in compressions
 e. Avoid rescuer fatigue by rotating rescuers every 1-2 minutes
 f. Avoid excessive ventilation. If no advanced airway, consider either a 15:1 or 30:2
 ventilation to compression ratio for adults, and 15:2 for children when 2 rescuers are
 present. Once advanced airway is applied, ventilations should not exceed 8-10
 breaths/minute
 g. Quantitative end-tidal CO₂ should be used to monitor effectiveness of chest
 compressions. If ETCO₂ < 10 mmHg, attempt to improve chest compression quality.
 Consider additional monitoring with biometric feedback which may improve compliance
 with suggested resuscitation guidelines
General Cardiac Arrest Process

- Chest compressions are usually the most rapidly applied therapy for the patient in cardiac arrest and should be applied as soon as the patient is noted to be pulseless. If the patient is being monitored with pads in place at the time of arrest, immediate defibrillation should take precedence over all other therapies, however, if there is any delay in defibrillation (for instance, in order to place pads), chest compressions should be initiated while the defibrillator is being applied. There is no guidance on how long these initial compressions should be applied, however, it is reasonable to either complete between 30 seconds and 2 minutes of chest compressions in cases of no bystander chest compressions OR to perform defibrillation as soon as possible after chest compressions initiated in cases of witnessed arrest.

- Chest compressions should be reinitiated immediately after defibrillation as pulses, if present, are often difficult to detect and rhythm and pulse checks interrupt compressions.

- Continue chest compressions between completion of AED analysis and AED charging.

- Effectiveness of chest compressions decreases with any movements. Patients should therefore be resuscitated as close to the point at which they are first encountered and should only be moved if the conditions on scene are unsafe or do not operationally allow for resuscitation. Chest compressions are also less effective in a moving vehicle. It is also dangerous to EMS providers, patients, pedestrians and other motorists to perform chest compressions in a moving ambulance. For these reasons and because in most cases the care provided by EMS providers is equivalent to that provided in emergency departments, resuscitation should occur on scene.

- Defibrillation dosing should follow manufacturer’s recommendation in the case of biphasic defibrillators. If the manufacturer’s recommendation is unknown, use highest setting possible. In the case of monophasic devices, setting should be 360J (or 4 J/kg for children).

2. Consider IV access during first round of chest compressions.
3. Administer epinephrine during the first or second round of compressions
4. Airway management strategy should be considered early during the case. At present, the most effective mechanism of airway management is uncertain with some systems managing the airway aggressively and others managing the airway with basic measures and both types of systems finding excellent outcomes. Regardless of the airway management style, consider the following principles:
 a. Airway management should not interrupt chest compressions
 b. Carefully follow ventilation rate and prevent hyperventilation
 c. Consider limited tidal volumes
 d. There is uncertainty regarding the proper goals for oxygenation during resuscitation. Current recommendations suggest using the highest flow rate possible through NRB or BVM. This should not be continued into the post-resuscitation phase in which there becomes more clear guidance on maintaining an oxygenation saturation of > 94%
 e. Special attention should be applied to the pediatric population and airway management/respiratory support. Given that the most likely cause of cardiac arrest is respiratory, airway management may be considered early in the patient’s care. However, the order of Circulation-Airway-Breathing is still recommended as the order of priority by the American Heart Association for pediatric resuscitation in order to ensure timely initiation of chest compressions to maintain perfusion, regardless of the underlying cause of the arrest. In addition, conventional CPR is preferred in children, since it is associated with better outcomes when compared to compression-only CPR
5. Special Circumstances in Cardiac Arrest
 a. Trauma – Refer to General Trauma Management guideline
 b. Pregnancy
 i. The best hope for fetal survival is maternal survival
 ii. Position the patient in the supine position with a second rescuer performing manual uterine displacement to the left in an effort to displace the gravid uterus and increase venous return by avoiding aorto-caval compression
 iii. If manual displacement is unsuccessful, the patient may be placed in the left lateral tilt position at 30°. This position is less desirable than the manual uterine displacement as chest compressions are more difficult to perform in this position
 iv. Chest compressions should be performed slightly higher on the sternum than in the non-pregnant patient to account for elevation of the diaphragm and abdominal contents in the obviously gravid patient
 v. Defibrillation should be performed as in non-pregnant patients
 c. Arrests of respiratory etiology (including drowning)
 Consider early and aggressive management of the patient’s airway as well as the above protocols for cardiac arrest
6. Consider application of the “pit crew” model of resuscitation
 a. Ideally, providers in each EMS agency will use a “pit crew” approach when using this protocol to ensure the most effective and efficient cardiac arrest care. Training should
include teamwork simulations integrating first responders, BLS, and ALS crewmembers who regularly work together. High-performance systems should practice teamwork using “pit crew” techniques with predefined roles and crew resource management principles. For example (the Pennsylvania State EMS Model for Pit Crew):

i. Rescuer 1 and 2 set up on opposite sides of patient’s chest and perform continuous chest compressions, alternating after every 100 compressions to avoid fatigue

ii. Consider use of a metronome or CPR feedback device to ensure that compression rate is 100-120/minute

iii. Chest compressions are only interrupted during rhythm check (AED analysis or manual) and defibrillation shocks. Continue compressions when AED/defibrillator is charging

iv. Additional rescuer obtains IO (or IV) access and gives Epinephrine. Consider tibial IO as first attempt at vascular access

v. During the first four cycles of compressions/defibrillation (approximately 10 minutes) avoid any attempt at intubation

vi. One responding provider assumes code leader position overseeing the entire response

vii. Use a CPR checklist to ensure that all best practices are followed during CPR

b. For efficient “pit crew” style care, the EMS agency medical director should establish the options that will be used by providers functioning within the EMS agency. Options include establishing:

i. The airway/ventilation management, if any, that will be used

ii. The initial route of vascular access

c. The EMS agency must, overseen by the agency medical director, perform a QI review of care and outcome for every patient that receives CPR

i. The QI should be coordinated with local receiving hospitals to include hospital admission, discharge, and condition information. This EMS agency QI can be accomplished by participation an organized cardiac arrest registry

ii. The QI should be coordinated with local PSAP/dispatch centers to review opportunities to assure optimal recognition of possible cardiac arrest cases and provision of dispatch-assisted CPR (including hands-only CPR when appropriate)

Quality Improvement

Key Documentation Elements
Should be tailored to any locally utilized data registry but may include as a minimum the following elements:

1. Resuscitation attempted and all interventions performed
2. Arrest witnessed
3. Location of arrest
4. First monitored rhythm
5. CPR before EMS arrival
6. Outcome
 a. Any ROSC
7. Presumed etiology
 a. Presumed cardiac
 b. Trauma
 c. Submersion
 d. Respiratory
 e. Other non-cardiac
 f. Unknown

Performance Measures
1. Time to scene
2. Time to patient
3. Time to first CPR
4. Time to first shock
5. Review of CPR Quality

References

Revision Date
September 15, 2014
Adult Post-ROSC (Return of Spontaneous Circulation) Care

(9914019 – Post Resuscitation Care)

Patient Care Goals
Out-of-hospital cardiac arrest in the U.S. has a mortality rate greater than 90% and results in excess of 300,000 deaths per year. Many of those who do survive suffer significant neurologic morbidity. Current research has demonstrated that care of patients with return of spontaneous circulation (ROSC) at specialized centers is associated with both decreased mortality and improved neurologic outcomes. It is believed that hypothermia suppresses the cascade of damaging biochemical events that causes secondary cellular injury and death after an anoxic insult.

The goal is therefore to optimize neurologic and other function following a return of spontaneous circulation following resuscitated cardiac arrest.

Patient Presentation

Inclusion Criteria
Patient returned to spontaneous circulation following cardiac arrest resuscitation

Exclusion Criteria
None

Patient Management

Assessment, Treatment, and Interventions
1. Perform general patient management
2. Support life-threatening problems associated with airway, breathing, and circulation. Monitor closely for reoccurrence of cardiac arrest
3. Titrate oxygen to keep O₂ saturation > 94%. Do NOT hyper-oxygenate
4. For hypotension (SBP less than 90 mmHg) associated with cardiogenic shock, give a Dopamine infusion at 5–20 mcg/kg/minute IV. Titrate to SBP greater than 90 mmHg in adults. Consider norepinephrine: there is recent evidence that supports the use of norepinephrine as the preferred intervention (initial dose: 0.5 – 1 mcg/minute titrated to effect. For patients in refractory shock: 8-30 mcg/minute)
5. Check blood glucose. If hypoglycemic, see appropriate guideline. If hyperglycemic, notify hospital on arrival
6. If patient seizures, refer to seizure guideline
7. Perform 12-lead EKG
8. Post cardiac arrest patients with evidence or interpretation consistent with ST elevation myocardial infarction (STEMI/Acute MI) may be transported to any hospitals which offer percutaneous coronary intervention in their cardiac catheterization laboratory
9. Consider transport patients to facility which offers specialized post-resuscitative care
10. Do not allow patient to become hyperthermic
11. Mild therapeutic hypothermia may be beneficial in unresponsive patients with ROSC. Only if a coordinated system of care exists to maintain therapy, may consider:
 a. Start an IV of ice-cold normal saline
b. Infuse a 20 to 30 ml/kg bolus (Goal: 2 liters of ice cold saline in adult patients)

b. While administering fluid boluses, frequently reassess perfusion for improvement and/or fluid overload respiratory distress. If perfusion improves, slow the IV to KVO and monitor closely. If patient develops fluid overload respiratory distress (dyspnea, rales, crackles, decreasing SpO₂), slow the IV to KVO

c. If patient unresponsive and patient begins shivering, sedate further with benzodiazepines

INDICATION FOR ICE SALINE: Unresponsive adult patients (with return of spontaneous return of circulation after a non-traumatic cardiac arrest.

CONTRAINDICATIONS FOR ICE SALINE:

1. Major trauma.
2. Preexisting hypothermia.
3. Hypotension (SBP less than 90 mmHg) unresponsive to vasopressors.
4. Known bleeding disorders or liver failure.
5. Responsive patient.

Patient Safety Considerations

None

Notes/Educational Pearls

Key Considerations

1. Hyperventilation is a significant cause of hypotension and recurrence of cardiac arrest in the post resuscitation phase and must be avoided
2. Most patients immediately post resuscitation will require ventilatory assistance
3. The condition of post-resuscitation patients fluctuates rapidly and continuously, and they require close monitoring. A significant percentage of Post ROSC patients will re-arrest
4. A moderate number of post ROSC patients may have evidence of ST elevation MI on EKG
5. Common causes of post-resuscitation hypotension include hyperventilation, hypovolemia, and pneumothorax

Pertinent Assessment Findings

Assess post ROSC rhythm, lung sounds, and for signs of hypoperfusion

Quality Improvement

Key Documentation Elements

1. Bystander CPR performed
2. First initial rhythm (presenting rhythm)
3. Immediate post-arrest rhythms, vital signs, oxygen saturation, neurologic status assessment
4. Post ROSC 12 lead ECG

All Rights Reserved V.11-14
Performance Measures

1. Survival to hospital discharge neurologically intact (CPC1 or CPC2)
2. Percent of ROSC patients transported to appropriate facility as defined by the EMS system

References

Determination of Death / Withholding Resuscitative Efforts

(No NEMSIS category)

Patient Care Goals
All clinically dead patients will receive all available resuscitative efforts including cardiopulmonary resuscitation (CPR) unless contraindicated by one of the exceptions defined below

Patient Presentation
A clinically dead patient is defined as any unresponsive patient found without respirations and without a palpable carotid pulse

Inclusion/Exclusion Criteria:
Resuscitation must be started on all patients who are found apneic and pulseless unless the following conditions exist (does not apply to victims of lightning strikes, drowning or hypothermia):

1. Traumatic injury or body condition clearly indicating biological death (irreversible brain death), limited to:
 a. Decapitation: the complete severing of the head from the remainder of the patient’s body
 b. Decomposition or putrefaction: the skin is bloated or ruptured, with or without soft tissue sloughed off. The presence of at least one of these signs indicated death occurred at least 24 hours previously
 c. Transection of the torso: the body is completely cut across below the shoulders and above the hips through all major organs and vessels. The spinal column may or may not be severed
 d. Incineration: 90% of body surface area with full thickness burns as exhibited by ash rather than clothing and complete absence of body hair with charred skin
 e. Dependent lividity with rigor mortis (when clothing is removed there is a clear demarcation of pooled blood within the body, and the body is generally rigid)
 f. Injuries incompatible with life (such as massive crush injury, complete exsanguination, severe displacement of brain matter)

OR

2. A valid DNR order (form, card, bracelet) or other actionable medical order (e.g. POLST/MOLST form) present, when it:
 a. Conforms to the state specifications for color and construction
 b. Is intact: it has not been cut, broken or shows signs of being repaired
 c. Displays the patient’s name and the physician’s name
Patient Management

Assessment
Assess for dependent lividity with rigor mortis and/or other inclusion criteria

Treatment and Interventions
1. If all the components above are confirmed, no CPR is required
2. If CPR has been initiated but all the components above have been subsequently confirmed, CPR may be discontinued and direct medical oversight contacted as needed
3. If any of the findings are different than those described above, clinical death is not confirmed and resuscitative measures must be immediately initiated or continued and the patient transported to a receiving hospital unless paramedic intercept is pending. The **Termination of Resuscitation** guideline should then be implemented
4. Do Not Resuscitate order (DNR/MOLST/POLST) with signs of life:
 a. If there is a DNR bracelet or DNR transfer form and there are signs of life (pulse and respirations), provide standard appropriate treatment under existing protocols matching the patient’s condition
 b. To request permission to withhold treatment under these conditions for any reason obtain direct medical oversight
 c. If there is documentation of a Do Not Intubate (DNI/MOLST/POLST) advanced directive, the patient should receive full treatment per protocols with the exception of any intervention specifically prohibited in the patient’s advanced directive
 d. If for any reason an intervention that is prohibited by an advanced directive is being considered, direct medical oversight should be obtained

Patient Safety Considerations
In cases where the patient's status is unclear and the appropriateness of withholding resuscitation efforts is questioned, EMS personnel should initiate CPR immediately and then contact direct medical oversight

Notes/Educational Pearls

Key Considerations
When there is a personal physician present at the scene who has an ongoing relationship with the patient, that physician may decide if resuscitation is to be initiated. When there is a registered nurse from a home health care or hospice agency present at the scene who has an ongoing relationship with the patient, and who is operating under orders from the patient’s private physician, that authorized nurse may decide if resuscitation is to be initiated. If the physician or nurse decides resuscitation is to be initiated, usual direct medical oversight procedures will be followed

Special Consideration: For scene safety and/or family wishes, provider may decide to implement CPR even if all the criteria for death are met

Pertinent Assessment Findings
No specific recommendations
Quality improvement

Key Documentation Elements
1. Clinical/situational details that may be available from bystanders/caregivers
2. Documentation of details surrounding decision to determine death
 a. Time of contact with direct medical oversight
 b. Time of death determination
3. Names/contact information for significant bystanders (e.g. MD/RN, caregivers)

Performance Measures
Compliance with guideline

References
2. National Guidelines for Statewide Implementation of EMS "Do Not Resuscitate" (DNR) Programs National Association of Emergency Medical Services Directors and the National Association of Emergency Medical Services Physicians. Prehospital and Disaster Medicine, April-June, 1994

Revision Date
September 15, 2014
Do Not Resuscitate Status/Advanced Directives/Health Care Power of Attorney (POA) Status

(9914169 – Cardiac Arrest – Do Not Resuscitate)

Patient Care Goals
To acknowledge and maintain the variety of ways that patients can express their wishes about cardiopulmonary resuscitation or end of life decision making

Patient Presentation

Inclusion/Exclusion Criteria

1. Patients must have one of the following documents or a valid alternative (such as identification bracelet indicating wishes) immediately available – note that some specifics can vary widely from state to state:
 a. Physician Orders for Life Sustaining Treatment (POLST) or Medical Orders for Life Sustaining Treatment (MOLST) – explicitly describes acceptable interventions for the patient in the form of medical orders, must be signed by a physician or other empowered medical provider to be valid
 b. Do Not Resuscitate (DNR) order – identifies that CPR and intubation are not to be initiated if the patient is in arrest or peri-arrest. The interventions covered by this order and the details around when to implement them can vary widely
 c. Advanced directives – document that describes acceptable treatments under a variable number of clinical situations including some or all of the following: what to do for cardiac arrest, whether artificial nutrition is acceptable, organ donation wishes, dialysis, etc. Frequently does not apply to emergent or potentially transient medical conditions
 d. As specified from state to state, in the absence of formal written directions (MOLST, POLST, DNR, advanced directives), and in the presence of a person with power of attorney for healthcare, or healthcare proxy, that person may prescribe limits of treatment

2. One of the documents above is valid when it meets all of the following criteria:
 a. Conforms to the state specifications for color and construction
 b. Is intact: it has not been cut, broken or shows signs of being repaired
 c. Displays the patient’s name and the physician’s name

3. If there is question about the validity of the form/instrument, the best course of action is to proceed with the resuscitation until additional information can be obtained to clarify the best course of action

4. If a patient has a valid version of one of the above documents it will be referred to as a “valid exclusion to resuscitation” for the purposes of this protocol

Patient Management

Assessment

1. If the patient has a valid exclusion to resuscitation then no CPR or airway management
should be attempted, however this does not exclude comfort measures including medications for pain as appropriate
2. If CPR has been initiated and a valid exclusion to resuscitation has been subsequently verified, CPR may be discontinued and direct medical oversight contacted as needed

Treatment and Interventions
1. If there is a valid exclusion to resuscitation and there are signs of life (pulse and respirations), EMS providers should provide standard appropriate treatment under existing protocols according to the patient’s condition. If the patient has a MOLST or POLST, it may provide specific guidance on how to proceed in this situation. Directives should be followed as closely as possible and direct medical oversight contacted as needed
2. The patient should receive full treatment per protocols with the exception of any intervention specifically prohibited in the patient’s valid exclusion to resuscitation
3. If for any reason an intervention that is prohibited by an advanced directive is being considered, direct medical oversight should be obtained

Patient Safety Considerations
In cases where the patient’s status is unclear and the appropriateness of withholding resuscitation efforts is questioned, EMS personnel should initiate CPR immediately and contact direct medical oversight

Notes/Educational Pearls
Key Considerations
1. If there is a personal physician present at the scene who has an ongoing relationship with the patient, that physician may decide if resuscitation is to be initiated
2. If there is a registered nurse from a home health care or hospice agency present at the scene who has an ongoing relationship with the patient, and who is operating under orders from the patient’s private physician, that nurse (authorized nurse) may decide if resuscitation is to be initiated
3. If the physician or nurse decides resuscitation is to be initiated, usual direct medical oversight procedures will be followed
4. Special Consideration: For scene safety and/or family wishes, provider may decide to implement CPR even if all the criteria for death are met

Pertinent Assessment Findings
No specific recommendations

Quality Improvement
Key Documentation Elements
1. Detailed description of the valid exclusion to resuscitation documentation used to guide resuscitation including a copy of the document if possible
2. Names/contact information for significant bystanders (family members, MD/RN, caregivers, healthcare power of attorney or proxy)

Performance Measures
Compliance with guideline
References

Revision Date
September 15, 2014
Termination of Resuscitative Efforts

(No NEMSIS category)

Patient Care Goals
When there is no response to prehospital cardiac arrest treatment, it is acceptable and often preferable to cease futile resuscitation efforts in the field.

1. In patients with cardiac arrest, prehospital resuscitation is initiated with the goal of returning spontaneous circulation before permanent neurologic damage occurs. In most situations, ALS providers are capable of performing an initial resuscitation that is equivalent to an in-hospital resuscitation attempt, and there is usually no additional benefit to emergency department resuscitation in most cases.
2. CPR that is performed during patient packaging and transport is much less effective than CPR done at the scene. Additionally, EMS providers risk physical injury while attempting to perform CPR in a moving ambulance while unrestrained. In addition, continuing resuscitation in futile cases places other motorists and pedestrians at risk, increases the time that EMS crews are not available for another call, impedes emergency department care of other patients, and incurs unnecessary hospital charges. Lastly, return of spontaneous circulation is dependent on a focused, timely resuscitation. The patient in arrest should be treated as expeditiously as possible, including quality, uninterrupted CPR and timely defibrillation as indicated.
3. When cardiac arrest resuscitation becomes futile, the patient’s family should become the focus of the EMS providers. Families need to be informed of what is being done, and transporting all cardiac arrest patients to the hospital is not supported by evidence and inconveniences the family by requiring a trip to the hospital where they must begin grieving in an unfamiliar setting. Most families understand the futility of the situation and are accepting of ceasing resuscitation efforts in the field.

Patient Presentation
Patient in cardiac arrest

Inclusion Criteria
1. Any cardiac arrest patient that has received resuscitation in the field but has not responded to treatment.
2. When resuscitation has begun and it is found that the patient has a DNR order or other actionable medical order (e.g. POLST/MOLST form)

Exclusion Criteria
Consider continuing resuscitation for patients with the following conditions (although under certain circumstances, direct medical oversight may order termination of resuscitation in these conditions also):

Cardiac arrest associated with medical conditions that may have a better outcome despite prolonged resuscitation, including:
1. Hypothermia
2. Near-drowning

All Rights Reserved V.11-14
3. Lightning strike
4. Electrocution
5. Drug overdose
6. Cardiac arrest in infants and children
7. Cardiac arrest in a public place

Patient Management
Resuscitation may/should be terminated under the following circumstance:
1. Non-traumatic arrest
 a. Patient is at least 18 years of age
 b. Patient is in cardiac arrest at the time of arrival of advanced life support
 i. No pulse
 ii. No respirations
 iii. No evidence of meaningful cardiac activity (e.g. no heart sounds, asystole or wide complex PEA < 60)
 c. Advanced life support resuscitation is administered for at least 20 minutes
 d. There is no return of spontaneous pulse and no evidence of neurological function (non-reactive pupils, no response to pain, no spontaneous movement)
 e. No evidence or suspicion of any of the following:
 i. Drug/toxin overdose
 ii. Hypothermia
 iii. Active internal bleeding
 iv. Preceding trauma
 f. All EMS personnel involved in the patient’s care agree that discontinuation of the resuscitation is appropriate
 g. Consider direct medical oversight before termination of resuscitative efforts
2. Traumatic arrest
 a. Patient is at least 18 years of age.
 b. Resuscitation efforts may be terminated in any blunt trauma patient who, based on thorough primary assessment, is found apneic, pulseless, and asystolic on an EKG or cardiac monitor upon arrival of emergency medical services at the scene
 c. Victims of penetrating trauma found apneic and pulseless by EMS, should be rapidly assessed for the presence of other signs of life, such as pupillary reflexes, spontaneous movement, response to pain and electrical activity on EKG
 i. Resuscitation may be terminated with direct medical oversight if these signs of life are absent
 ii. If resuscitation is not terminated, transport is indicated
 d. Cardiopulmonary arrest patients in whom mechanism of injury does not correlate with clinical condition, suggesting a non-traumatic cause of arrest, should have standard ALS resuscitation initiated
 e. All EMS personnel involved in the patient’s care agree that discontinuation of the resuscitation is appropriate
 f. Consider direct medical oversight before termination of resuscitative efforts

Assessment
1. Pulse
2. Respirations
3. Neurologic status assessment (see Appendix VI; purposeful movement, pupillary response)
4. Cardiac activity (including electrocardiography, cardiac auscultation and/or ultrasonography)
5. Quantitative capnography

Treatment and Interventions
1. Focus on continuous, quality CPR that is initiated as soon as possible
2. Focus attention on the family and/or bystanders. Explain the rationale for termination
3. Consider support for family members such as other family, friends, clergy, faith leaders, or chaplains

Patient Safety Considerations:
All patients who are found in ventricular fibrillation or whose rhythm changes to ventricular fibrillation should in general have full resuscitation continued on scene

Notes / Educational Pearls:

Key Considerations and Pertinent Assessment Findings
1. In remote or wilderness situations, EMS providers should make every effort to contact direct medical oversight, but resuscitation may be terminated in the field without direct medical oversight when the following have occurred:
 a. There has been no return of pulse despite > 30 minutes of CPR (this does not apply in the case of hypothermia)
 b. Transport to an emergency department will take > 30 minutes (this does not apply in the case of hypothermia)
 c. EMS providers are exhausted and it is physically impossible to continue the resuscitation
2. Logistical factors should be considered, such as collapse in a public place, family wishes, and safety of the crew and public
3. Survival and functional neurologic outcomes are unlikely if ROSC is not obtained by EMS. It is dangerous to crew, pedestrians, and other motorists to attempt to resuscitate a patient during ambulance transport
4. Quantitative end-tidal carbon dioxide measurements of less than 10 mmHg or falling > 25% despite resuscitation indicates a poor prognosis and provide additional support for termination

Quality Improvement

Key Documentation Elements
1. All items (a-f in Non-traumatic or Traumatic arrest) listed under patient management must be clearly documented in the EMS patient care report in addition to the assessment findings supporting this medical decision making
2. If resuscitation is continued for special circumstance or despite satisfying the criteria in this guideline, the rationale for such decision making must be documented

Performance Measures
1. Time to CPR
2. Time to AED application if applicable
3. Review of CPR quality
4. Assurance of appropriateness of transport and CPR during transport
References

4. Morrison LJ1, Verbeek PR, Zhan C, Kiss A, Allan KS. Validation of a universalprehospital termination of resuscitation clinical prediction rule for advanced and basic life support providers

Revision Date
September 15, 2014
Pediatric Specific Guidelines
Apparent Life Threatening Event (ALTE)

(9914197 – Apparent Life Threatening Event (ALTE))

Patient Care Goals
1. Recognize patient characteristics and symptoms consistent with an ALTE
2. Promptly identify and intervene for patients who require escalation of care
3. Choose proper destination for patient transport

Patient Presentation

Inclusion Criteria
Suspected ALTE: A patient with an episode that is frightening to the observer with some combination of the following:
1. Apnea (central or obstructive)
2. Color change (usually cyanosis or pallor)
3. Marked change in muscle tone (flaccid or rigid)

Exclusion Criteria
1. Age > 12 months
2. Presumed underlying cause that includes one of the following (refer to appropriate guidelines):
 a. Seizure
 b. Respiratory distress
 c. Cardiopulmonary arrest
 d. Trauma with known mechanism of injury

Patient Management

Assessment
1. History
 a. History and circumstances associated with event of symptoms
 b. History of color change (including cyanosis and/or pallor), irregular breathing or change in muscle tone
 c. Concurrent symptoms (fever, cough, rhinorrhea, vomiting, diarrhea, rash, labored breathing)
 d. Prior history of ALTE, prior ALTE event in last 24 hours
 e. Family history of SIDS
 f. Treatment and Interventions performed (resuscitation attempts at home)
 g. History of premature birth before 37 weeks gestation
 h. Past medical history (cardiac, neurologic, respiratory, or chromosomal anomalies)
 i. History of gastroesophageal reflux

2. Exam
 a. Full set of vital signs (per Universal Care guideline)
 b. Signs of respiratory distress (grunting, nasal flaring, retracting)
 c. Color (pallor, cyanosis, normal)
d. Mental status (alert, tired, lethargic, unresponsive, irritability)
e. Physical exam for external signs of trauma

Treatment and Interventions

1. Monitoring
 a. Place on cardiac monitor
 b. Pulse oximetry should be routinely used as an adjunct to other monitoring
 c. Blood glucose. Repeat glucose assessments on prolonged transports

2. Airway
 a. Give supplemental oxygen for signs of respiratory distress or hypoxemia. Escalate from a nasal cannula to a simple face mask to a non-rebreather mask as needed, in order to maintain normal oxygenation
 b. Suction the nose and/or mouth (via bulb, suction catheter) if excessive secretions are present

3. Utility of IV Placement and Fluids
 IVs should only be placed in children for clinical concerns of shock, or when administering IV medications

4. Advanced Airway Management
 a. If apnea persists, initiate bag-valve-mask ventilation
 b. Supraglottic devices and intubation should be utilized only if bag-valve-mask ventilation fails in setting of respiratory failure or apnea. The airway should be managed in the least invasive way possible

Patient Safety Considerations

1. Regardless of patient appearance, all patients with a history of signs or symptoms of ALTE should be transported for further evaluation

2. Destination Considerations
 a. Consider transport to a facility with pediatric critical care capability for patients with history of cyanosis, significant past medical history (e.g. cardiac, respiratory) or past medical history of ALTE, resuscitation attempt by caregiver, or more than one ALTE in 24 hours
 b. Given possible need for intervention, all patients should be transported to facilities with baseline readiness to care for children

Notes/Educational Pearls

Key Considerations

1. ALTE is a group of symptoms, not a disease process
2. As many as 10% of patients will require ED or hospital intervention
3. Determine severity, duration, and nature of event
4. All patients should be transported
5. Contact direct medical oversight if parent/guardian is refusing medical care and/or transport

Pertinent Assessment Findings

1. Assess for irritability (cries with minimal provocation)
2. Look for external signs of trauma
Quality Improvement

Key Documentation Elements
1. Document key aspect of history
 a. Color change
 b. Apnea
 c. Change in muscle tone
 d. Caregiver resuscitation efforts
 e. History of prematurity
 f. Prior ALTE events
 g. Past medical history
2. Document key aspects of the exam to assess for a change after each intervention:
 a. Respiratory rate and effort
 b. Oxygen saturation
 c. Air entry
 d. Mental status, presence of irritability
 e. Color

Performance Measures
1. Prehospital on-scene time
2. Appropriateness of IV placement
3. Appropriate transport destination

References

All Rights Reserved V.11-14

Pediatric Respiratory Distress (Bronchiolitis)

(Adapted from an evidence-based guideline created using the National Prehospital Evidence-Based Guideline Model Process)

(No NEMSIS category)

Patient Care Goals
1. Alleviate respiratory distress
2. Promptly identify respiratory distress, failure, and/or arrest, and intervene for patients who require escalation of therapy
3. Deliver appropriate therapy by differentiating other causes of pediatric respiratory distress

Patient Presentation
Inclusion Criteria
Child < age 2 with wheezing or diffuse rhonchi

Exclusion Criteria
1. Anaphylaxis
2. Croup
3. Epiglottitis
4. Foreign body aspiration
5. Submersion/drowning

Patient Management
Assessment
1. History
 a. Onset of symptoms
 b. Concurrent symptoms (fever, cough, rhinorrhea, tongue/lip swelling, rash, labored breathing, foreign body aspiration)
 c. Sick contacts
 d. History of wheezing
 e. Treatments given
 f. Number of emergency department visits in the past year
 g. Number of admissions in the past year
 h. Number of ICU admissions ever
 i. History of prematurity
 j. Family history of asthma, eczema, or allergies
2. Exam
 a. Full set of vital signs (T, BP, RR, P, O₂ saturation)
 b. Air entry (normal vs. diminished)
 c. Breath sounds (wheezes, crackles, rales, rhonchi, diminished, clear)
 d. Signs of distress (grunting, nasal flaring, retracting, stridor)
 e. Weak cry or inability to speak full sentences (sign of shortness of breath)
 f. Color (pallor, cyanosis, normal)
 g. Mental status (alert, tired, lethargic, unresponsive)
h. Hydration status (+/- sunken eyes, delayed capillary refill, mucus membranes moist vs. tacky, fontanel flat vs. sunken)

Treatment and Interventions
1. Pulse oximetry and end-tidal CO₂ (ETCO₂) should be routinely used as an adjunct to other forms of respiratory monitoring
2. Perform EKG only if there are no signs of clinical improvement after treating respiratory distress
3. Airway
 a. Give supplemental oxygen. Escalate from a nasal cannula to a simple face mask to a non-breather mask as needed, in order to maintain normal oxygenation
 b. Suction the nose and/or mouth (via bulb, Yankauer®, or suction catheter) if excessive secretions are present
4. Inhaled Medications
 Nebulized epinephrine should be administered to children in severe respiratory distress with bronchiolitis (e.g. coarse breath sounds) in the prehospital setting if other treatments (e.g., suctioning, oxygen) fail to result in clinical improvement
5. Utility of IV Placement and Fluids
 IVs should only be placed in children with respiratory distress for clinical concerns of dehydration, or when administering IV medications
6. Steroids
 Are generally not efficacious, and not given in the prehospital setting
7. Improvement of Oxygenation and/or Respiratory Distress with Non-invasive Airway Adjuncts
 a. Continuous positive airway pressure (CPAP) or high flow nasal cannula (HFNC) should be administered, when available, for severe respiratory distress
 b. Bag-Valve-Mask Ventilation should be utilized in children with respiratory failure
8. Supraglottic Devices and Intubation
 a. Supraglottic devices and intubation should be utilized only if bag-valve-mask ventilation fails
 b. The airway should be managed in the least invasive way possible

Patient Safety Considerations
Routine use of lights and sirens is not recommended during transport

Notes/Educational Pearls

Key Considerations
1. Suctioning can be a very effective intervention to alleviate distress, since infants are obligate nose breathers
2. Heliox should not be routinely administered to children with respiratory distress
3. Insufficient data exist to recommend the use of inhaled steam or nebulized saline
4. Though albuterol has previously been a consideration, the most recent evidence does not demonstrate a benefit in using it for bronchiolitis
5. Ipratropium and other anticholinergic agents should not be given to children with bronchiolitis in the prehospital setting
6. Though nebulized hypertonic saline has been shown to decrease hospital length of stay when used for bronchiolitis, it does not provide immediate relief of distress and should not be administered to children in respiratory distress in the prehospital setting

All Rights Reserved V.11-14
Pertinent Assessment Findings
Frequent reassessment is necessary to determine if interventions have alleviated signs of respiratory distress or not

Quality Improvement

Key Documentation Elements
Document key aspects of the exam to assess for a change after each intervention:
1. Respiratory rate
2. Oxygen saturation
3. Use of accessory muscles
4. Breath sounds
5. Air entry
6. Mental status
7. Color

Performance Measures
1. CPAP utilization
2. Time to administration of specified interventions in the protocol
3. Rate of administration of accepted therapy (whether or not certain medications/interventions were given)
4. Change in vital signs (i.e. heart rate, blood pressure, temperature, respiratory rate, pulse oximeter, capnography values)
5. Time to administration of specified interventions in the protocol. Number of advanced airway attempts
6. Mortality

References

8. Chavasse RJPG, Seddon P, Bara A, McKean MC. Short acting beta2-agonists for recurrent wheeze in children under two years of age. *Cochrane Database of Systematic Reviews*

23. Thia LP, McKenzie SA, Blyth TP, Minasian CC, Kozlowska WJ, Carr SB. Randomized controlled trial of nasal continuous positive airways pressure (CPAP) in bronchiolitis. *Archives of Disease in Childhood*, 2008 93(1), 45-47

Revision Date
September 15, 2014

All Rights Reserved V.11-14
Pediatric Respiratory Distress (Croup)
(Adapted from an evidence-based guideline created using the National Prehospital Evidence-Based Guideline Model Process)

(No NEMSIS category)

Patient Care Goals
1. Alleviate respiratory distress
2. Promptly identify respiratory distress, respiratory failure, and respiratory arrest, and intervene for patients who require escalation of therapy
3. Deliver appropriate therapy by differentiating other causes of pediatric respiratory distress

Patient Presentation

Inclusion Criteria
Suspected Croup (history of stridor or history of barky cough)

Exclusion Criteria
Presumed underlying cause that includes one of the following:
1. Anaphylaxis
2. Asthma
3. Bronchiolitis (wheezing < 2 years of age)
4. Foreign body aspiration
5. Submersion/drowning

Patient Management

Assessment
1. History
 a. Onset of symptoms (history of choking)
 b. Concurrent symptoms (fever, cough, rhinorrhea, tongue/lip swelling, rash, labored breathing, foreign body aspiration)
 c. Sick contacts
 d. Treatments given
 e. Personal history of asthma, wheezing, or croup in past
2. Exam
 a. Full set of vital signs (T, BP, RR, P, O₂ sat)
 b. Presence of stridor at rest or when agitated
 c. Description of cough
 d. Other signs of distress (grunting, nasal flaring, retracting)
 e. Color (pallor, cyanosis, normal)
 f. Mental status (alert, tired, lethargic, unresponsive)

Treatment and Interventions
1. Monitoring
 a. Pulse oximetry and end-tidal CO₂ (ETCO₂) should be routinely used as an adjunct to other forms of respiratory monitoring
b. Perform EKG only if there are no signs of clinical improvement after treating respiratory distress

2. Airway
 a. Give supplemental oxygen. Escalate from a nasal cannula to a simple face mask to a non-breather mask as needed, in order to maintain normal oxygenation
 b. Suction the nose and/or mouth (via bulb, Yankauer®, or suction catheter) if excessive secretions are present

3. Inhaled Medications
 a. Epinephrine 5 ml of 1:10,000 (0.5 mg) nebulized, should be administered by advanced life support (ALS) providers to all children in respiratory distress with signs of stridor at rest. This medication should be repeated at this dose with unlimited frequency for ongoing distress
 b. Humidified oxygen or mist therapy is **not** indicated

4. Medications
 Dexamethasone 0.6 mg/kg oral, IV, or IM to max dose of 16 mg should be administered to patients with suspected croup

5. Utility of IV Placement and Fluids
 IVs should only be placed in children with respiratory distress for clinical concerns of dehydration, or when administering IV medications

6. Improvement of Oxygenation and/or Respiratory Distress with Non-invasive Airway Adjuncts
 a. Heliox for the treatment of croup can be considered for severe distress not responsive to more than 2 doses of epinephrine
 b. Continuous positive airway pressure (CPAP) should be administered for severe respiratory distress
 c. Bag-valve-mask ventilation should be utilized in children with respiratory failure

7. Supraglottic Devices and Intubation
 Supraglottic devices and intubation should be utilized only if bag-valve-mask ventilation fails. The airway should be managed in the least invasive way possible

Patient Safety Considerations
1. Routine use of lights and sirens is not recommended during transport
2. Patients who receive inhaled epinephrine should be transported to definitive care

Notes/Educational Pearls

Key Considerations
1. Upper airway obstruction can have inspiratory, expiratory, or biphasic stridor
2. Foreign bodies can mimic croup, it is important to ask about a possible choking event
3. Impending respiratory failure is indicated by:
 a. Change in mental status such as fatigue and listlessness
 b. Pallor
 c. Dusky appearance
 d. Decreased retractions
 e. Decreased breath sounds with decreasing stridor
4. Without stridor at rest or other evidence of respiratory distress, inhaled medications may not be necessary
Pertinent Assessment Findings
1. Respiratory distress (retractions, wheezing, stridor)
2. Decreased oxygen saturation
3. Skin color
4. Neurologic status assessment
5. Reduction in work of breathing after treatment
6. Improved oxygenation after breathing

Quality Improvement

Key Documentation Elements
Document key aspects of the exam to assess for a change after each intervention:
1. Respiratory rate
2. Oxygen saturation
3. Use of accessory muscles or tracheal tugging
4. Breath sounds
5. Air entry
6. Mental status
7. Color

Performance Measures
1. Time to administration of specified interventions in the protocol
2. Frequency of administration of specified interventions in the protocol

References
9. Scolnik D, Coates AL, Stephens D, Da Silva Z, Lavine E, Schuh S. Controlled delivery of high vs

Revision Date

September 15, 2014
Neonatal Resuscitation

(9914133 – Newborn/Neonatal Resuscitation)

Patient Care Goals
1. Provide routine care to the newly born infant
2. Perform a neonatal assessment
3. Rapidly identify newly born infants requiring resuscitative efforts
4. Provide appropriate interventions to minimize distress in the newly born infant
5. Recognize the need for additional resources based on patient condition and/or environmental factors

Patient Presentation

Inclusion Criteria
Newly born infants

Exclusion Criteria
Documented gestational age < 20 weeks (usually calculated by date of last menstrual period). If any doubt about accuracy of gestational age, initiate resuscitation

Patient Management

Assessment
1. History
 a. Date and time of birth
 b. Onset of symptoms
 c. Prenatal history (prenatal care, substance abuse, multiple gestation, maternal illness)
 d. Birth history (maternal fever, presence of meconium, prolapsed or nuchal cord, maternal bleeding)
 e. Estimated gestational age (may be based on last menstrual period)
2. Exam
 a. Respiratory rate and effort (strong, weak, or absent; regular or irregular)
 b. Signs of respiratory distress (grunting, nasal flaring, retractions, gasping, apnea)
 c. Heart rate (fast, slow, or absent)
 i. Precordium, umbilical stump or brachial pulse may be used
 ii. Auscultation of chest is preferred since palpation of umbilical stump is less accurate
 d. Muscle tone (poor or strong)
 e. Color/Appearance (central cyanosis, acrocyanosis, pallor, normal)
 f. APGAR score (appearance, pulse, grimace, activity, respiratory effort)
 May be calculated for documentation, but not necessary to guide resuscitative efforts
 g. Estimated gestational age (term, late preterm, premature)
 h. Pulse oximetry should be considered if prolonged resuscitative efforts or if supplemental oxygen is administered
 Goal: oxygen saturation at 10 minutes is 85-95%
Treatment and Interventions

1. Clamp cord in two places and cut cord between the clamps if still attached to mother
2. Warm, dry, and stimulate
 a. Wrap infant in dry towel or thermal blanket to keep infant as warm as possible during resuscitation; keep head covered if possible
 b. If strong cry, regular respiratory effort, good tone, and term gestation, infant should be placed skin-to-skin with mother and covered with dry linen
3. If weak cry, signs of respiratory distress, poor tone, or preterm gestation then position airway (sniffing position) and clear airway as needed
 If thick meconium or secretions present and signs of respiratory distress, suction mouth then nose
4. If heart rate > 100 beats per minute
 a. Monitor for central cyanosis
 Provide blow-by oxygen as needed
 b. Monitor for signs of respiratory distress. If apneic or in significant respiratory distress:
 i. Initiate bag-valve-mask ventilation with room air at 40-60 breaths per minute
 ii. Consider endotracheal intubation as per local guidelines
5. If heart rate < 100 beats per minute
 a. Initiate bag-valve-mask ventilation with room air at 40-60 breaths per minute
 i. Primary indicator of effective ventilation is improvement in heart rate
 ii. Rates and volumes of ventilation required can be variable, only use the minimum necessary rate and volume to achieve chest rise and a change in heart rate
 b. If no improvement after 90 seconds, change oxygen delivery to 30% FiO\(_2\) if blender available, otherwise 100% FiO\(_2\) until heart rate normalizes
 c. Consider endotracheal intubation per local guidelines if bag-valve-mask ventilation is ineffective
6. If heart rate < 60 beats per minute
 a. Ensure effective ventilations with supplementary oxygen and adequate chest rise
 b. If no improvement after 30 seconds, initiate chest compressions
 i. Two-thumb-encircling-hands technique is preferred
 c. Coordinate chest compressions with positive pressure ventilation (3:1 ratio, 90 compressions and 30 breaths per minute)
 d. Consider endotracheal intubation per local guidelines

Patient Safety Considerations

Hypothermia is common in newborns and worsens outcomes of nearly all post-natal complications. Ensure heat retention by drying the infant thoroughly, covering the head, and wrapping the baby in dry cloth. When it does not encumber necessary assessment or required interventions, “kangaroo care” (i.e. placing the infant skin-to-skin directly against mother’s chest and wrapping them together) is an effective warming technique

Notes/Educational Pearls

Key Considerations

1. Approximately 10% of newly born infants require some assistance to begin breathing
2. Deliveries complicated by maternal bleeding (placenta previa, vas previa, or placental abruption) place the infant at risk for hypovolemia secondary to blood loss
3. Low birth weight infants are at high risk for hypothermia due to heat loss
4. If pulse oximetry is used as an adjunct, the preferred placement place of the probe is the right arm, preferably wrist or medial surface of the palm. Normalization of blood oxygen levels \((\text{SaO}_2 85-95\%)\) will not be achieved until approximately 10 minutes following birth.

5. Both hypoxia and excess oxygen administration can result in harm to the infant. If prolonged oxygen use is required, titrate to maintain an oxygen saturation of 85-95%.

6. While not ideal, a larger facemask than indicated for patient size may be used to provide bag-valve-mask ventilation if an appropriately sized mask is not available. Avoid pressure over the eyes as this may result in bradycardia.

7. Increase in heart rate is the most reliable indicator of effective resuscitative efforts.

8. A multiple gestation delivery may require additional resources and/or providers.

Pertinent Assessment Findings

1. It is difficult to determine gestational age in the field. If there is any doubt as to viability, resuscitation efforts should be initiated.

2. Acrocyanosis, a blue discoloration of the distal extremities, is a common finding in the newly born infant transitioning to extrauterine life. This must be differentiated from central cyanosis.

Quality Improvement

Key Documentation Elements

1. Historical elements
 a. Prenatal complications
 b. Delivery complications
 c. Date and time of birth
 d. Estimated gestational age

2. Physical exam findings
 a. Heart rate
 b. Respiratory rate
 c. Respiratory effort
 d. Appearance
 e. APGAR score at 1 and 5 minutes

Performance Measures

1. Prehospital on-scene time
2. Call time for additional resources
3. Arrival time of additional unit
4. Time to initiation of interventions
5. Use of oxygen during resuscitation
6. Presence of advanced life support (ALS) versus basic life support (BLS) providers
7. ROSC and/or normalization of heart rate
8. Length of stay in neonatal intensive care unit
9. Length of stay in newborn nursery
10. Length of stay in hospital
11. Knowledge retention of prehospital providers
12. Number of advanced airway attempts
13. Mortality
References

Revision Date
September 15, 2014
Patient Care Goals
1. Recognize imminent birth
2. Assist with uncomplicated delivery of term newborn
3. Recognize complicated delivery situations
4. Apply appropriate techniques when delivery complication exists

Patient Presentation
Inclusion Criteria
Imminent delivery with crowning

Exclusion Criteria
1. Vaginal bleeding in any stage of pregnancy (see Obstetrical/Gynecological Conditions guideline)
2. Emergencies in first or second trimester of pregnancy (see Obstetrical/Gynecological Conditions guideline)
3. Seizure from eclampsia (see Seizure guideline)

Patient Management

Assessment:
Signs of imminent delivery:
Contractions, crowning, urge to push, urge to move bowels, membrane rupture or bloody show

Treatment and Interventions
1. If patient in labor but no signs of impending delivery, transport to appropriate receiving facility
2. Delivery should be controlled so as to allow a slow controlled delivery of infant. This will prevent injury to mother and infant
3. If complications of delivery are identified, follow the following steps:
 a. Shoulder Dystocia – if delivery fails to progress after head delivers, quickly attempt the following
 i. Hyperflex mother’s hips to severe supine knee-chest position
 ii. Apply firm suprapubic pressure to attempt to dislodge shoulder
 iii. Apply high-flow oxygen to mother
 iv. Transport as soon as possible
 v. Contact direct medical oversight and/or closest appropriate receiving facility for direct medical oversight and to prepare team
 b. Prolapsed Umbilical Cord
 i. Placed gloved fingers between infant and uterus to avoid compression of cord

All Rights Reserved V.11-14
ii. Consider placing mother in prone knee-chest position
iii. Apply high-flow oxygen to mother
iv. Transport as soon as possible
v. Contact and/or closest appropriate receiving facility for direct medical oversight and to prepare team

c. Maternal Cardiac Arrest
i. Apply manual pressure to displace uterus from right to left
ii. See Cardiac Arrest (VF/VT/Asystole/PEA) guideline for resuscitation care (defibrillation and medications should be given for same indications and doses as if non-pregnant patient)
iii. Transport as soon as possible if infant is estimated to be over 24 weeks gestation (perimortem Cesarean section at receiving facility is most successful if done within 5 minutes of maternal cardiac arrest)
iv. Contact direct medical oversight and/or closest appropriate receiving facility for direct medical oversight and to prepare team

d. Breech Birth
i. If head fails to deliver, place gloved hand into vagina with fingers between infant’s face and uterine wall to create an open airway
ii. Apply high-flow oxygen to mother
iii. Transport as soon as possible
iv. Contact direct medical oversight and/or closest appropriate receiving facility for direct medical oversight and to prepare team

4. Support the infant’s head as needed
5. Check the umbilical cord surrounding the neck. If present, slip it over the head. If unable to free the cord from the neck, double clamp the cord and cut between the clamps
6. Do NOT routinely suction the infant’s airway (even with a bulb syringe) during delivery
7. Grasping the head with hand over the ears, gently pull down to allow delivery of the anterior shoulder
8. Gently pull up on the head to allow delivery of the posterior shoulder
9. Slowly deliver the remainder of the infant
10. Clamp cord 2 inches from the abdomen with 2 clamps and cut the cord between the clamps
11. Record APGAR scores at 1 and 5 minutes. After delivery of infant, suctioning (including suctioning with a bulb syringe) should be reserved for infants who have obvious obstruction to the airway or require positive pressure ventilation (follow Neonatal Resuscitation guideline for further care of the infant)
12. The placenta will deliver spontaneously, often within 5-15 minutes of the infant. Do not force the placenta to deliver. Contain all tissue in plastic bag and transport
13. After delivery, massaging the uterus and allowing the infant to nurse will promote uterine contraction and help control bleeding

Patient Safety Considerations
1. Supine Hypotension Syndrome: place patient in lateral recumbent position if mother has hypotension before delivery
2. Do NOT routinely suction the infant’s airway (even with a bulb syringe) during delivery
3. Newborns are very slippery, take care not to drop the infant
4. Do not pull on the umbilical cord while the placenta is delivering
5. If possible, transport between deliveries if mother is expecting twins
Notes/Educational Pearls

1. OB assessment:
 a. Length of pregnancy
 b. Number of pregnancies
 c. Number of viable births
 d. Number of non-viable births
 e. Last menstrual period
 f. Due date
 g. Prenatal care
 h. Number of expected babies
 i. Drug use

2. Notify direct medical oversight if:
 a. Prepartum hemorrhage
 b. Postpartum hemorrhage
 c. Breech presentation
 d. Limb presentation
 e. Nuchal cord
 f. Prolapsed cord

3. Some bleeding is normal with any childbirth. Large quantities of blood or free bleeding are abnormal

Quality Improvement

Key Documentation Elements
Document all times (delivery, contraction frequency and length)

Performance Measures
1. Recognition of complications
2. Documentation of APGAR scores
3. Maternal reassessment

References
Consensus process based. No specific recommendations

Revision Date
September 15, 2014
Nausea/Vomiting

(9914131 – Nausea/Vomiting)

Patient Care Goals
Decrease discomfort secondary to nausea and vomiting

Patient Presentation

**Inclusion criteria**
Currently nauseated and/or vomiting

**Exclusion Criteria**
No specific recommendations

Patient Management

Assessment
1. Routine patient care (vital signs)
2. History and physical examination focused on potential causes of nausea and vomiting (e.g. gastrointestinal, cardiovascular, gynecologic)

Treatment and Interventions
1. Anti-emetic medication administration (optional, if available):
 a. **Ondansetron**
 i. Adult: 4mg IV/PO
 ii. Pediatric between 6 m/o –14 yo: 0.15 mg/kg IV/PO (maximum dose of 4 mg)
 b. **Prochlorperazine**
 i. Adult: 5 mg IV/IM
 ii. Pediatric over 2 yo only: 0.1 mg/kg slow IV or deep IM (maximum 10 mg)
 c. **Metoclopramide**
 i. Adult: 10 mg IV/IM
 ii. Pediatric over 2 yo only: 0.1 mg/kg IM or IV (maximum 10 mg)
 iii. May repeat x 1 in 20 -30 minutes if no relief
2. Consider Normal Saline bolus of 500 ml unless contraindicated (e.g. h/o CHF, renal failure)
 a. May repeat as indicated
 b. Consider 10 – 20 ml/kg IV fluid unless contraindicated

Patient Safety Considerations
Although less common then with other anti-emetics, dystonic and extrapyramidal symptoms are possible in response to ondansetron administration

Notes/Educational Pearls

Key Considerations
1. Ondansetron is preferred in children for the treatment of nausea and vomiting.
 Metoclopramide has less adverse effects than prochlorperazine in children
2. Prochlorperazine and metoclopramide have an increased risk of dystonic reactions. Some phenothiazines also have an increased risk of respiratory depression when used with other
medications that cause respiratory depression, and some phenothiazines can cause neuroleptic malignant syndrome.

3. IV form of ondansetron may be given PO in same dose.

4. For dystonia/akathesia induced by an anti-emetic administer diphenhydramine:
 a. Adult: 25-50 mg IV/IM/PO
 b. Pediatric: 1-2 mg/kg IV/IM/PO (maximum 50 mg)

5. Nausea and vomiting are symptoms of illness – in addition to treating the patient’s nausea and vomiting a thorough history and physical are key to identifying what may be a disease in need of emergent treatment (e.g. bowel obstruction, myocardial infarction, pregnancy).

Pertinent Assessment Findings

1. Vital signs
2. Risk factors for heart disease/EKG if applicable
3. Pregnancy status
4. Abdominal exam

Quality Improvement

Key Documentation Elements

1. Vital signs
2. History and physical in regards to etiology of nausea/vomiting
3. Vital sign and subjective response to interventions

Performance Measures

No specific recommendations

References

Revision Date

September 15, 2014
Obstetrical/Gynecological Conditions

(9914159 – Gynecological Emergencies; 9914161 – Pregnancy Related Emergencies)

Patient Care Goals
1. Recognize serious conditions associated with hemorrhage during pregnancy even when hemorrhage or pregnancy is not apparent (e.g. ectopic pregnancy, abruption placenta, placenta previa)
2. Provide adequate resuscitation for hypovolemia

Patient Presentation
Inclusion Criteria
1. Female patient with vaginal bleeding in any trimester
2. Female patient with pelvic pain or possible ectopic pregnancy
3. Maternal age at pregnancy may range from 10 to 60 years of age

Exclusion Criteria
1. Childbirth and active labor (see Childbirth guideline)
2. Seizure related to pregnancy/eclampsia (see Seizures guideline)
3. Post-partum hemorrhage (see Childbirth guideline)

Patient Management
Assessment
1. Obtain history
 a. Abdominal pain – onset, duration, quality, radiation, provoking or relieving factors
 b. Vaginal bleeding – onset, duration, quantity (pads saturated)
 c. Syncope/lightheadedness
 d. Nausea/vomiting
 e. Fever

2. Monitoring
 a. Monitor EKG if history of syncope or lightheadedness
 b. Monitor pulse oximetry if signs of hypotension or respiratory symptoms
3. Secondary survey pertinent to obstetric issues:
 a. Constitutional: vital signs, orthostatic vital signs, skin color
 b. Abdomen: distention, tenderness
 c. Genitourinary: visible bleeding
 d. Neurologic: mental status

Treatment and Interventions
1. If signs of shock or orthostasis:
 a. Position patient supine and keep patient warm
 b. Volume resuscitation:
 Normal saline 1-2 liters IV
 c. Reassess vital signs and response to fluid resuscitation
2. Disposition:
 Transport to closest appropriate receiving facility
Patient Safety Considerations
1. Patients in third trimester of pregnancy should be transported on left side or with uterus manually displaced to left if hypotensive
2. Do not place hand/fingers into vagina of bleeding patient except in cases of prolapsed cord or breech birth that is not progressing

Notes/Educational Pearls
Key Considerations
Syncope can be a presenting symptom of hemorrhage from ectopic pregnancy or causes of vaginal bleeding

Pertinent Assessment Findings
1. Vital signs to assess for signs of shock (e.g. tachycardia, hypotension)
2. Abdominal exam (e.g. distension, rigidity, guarding)
3. If pregnant, evaluate fundal height

Quality Improvement
Key Documentation Elements
Document full vital signs and physical exam findings

Performance Measures
1. Patients with signs of hypoperfusion or shock should not be ambulated to stretcher
2. If available, IV should be initiated on patients with signs of hypoperfusion or shock
3. Recognition and appropriate treatment of shock

References
General consensus process based. No specific recommendations

Revision Date
September 15, 2014
Respiratory

Airway Management

(Adapted from an evidence-based guideline created using the National Prehospital Evidence-Based Guideline Model Process)

(9914003 – Airway Failed; 9914001 – Airway)

Patient Care Goals

1. Provide effective oxygenation and ventilation
2. Recognize and alleviate respiratory distress
3. Provide necessary interventions quickly and safely to patients with the need for respiratory support
4. Identify a potentially difficult airway in a timely fashion

Patient Presentation

Inclusion Criteria

1. Children and adults with signs of severe respiratory distress/respiratory failure
2. Patients with evidence of hypoxemia or hypoventilation

Exclusion Criteria

1. Patients with tracheostomies
2. Chronically ventilated patients
3. Newborn patients
4. Patients in whom oxygenation and ventilation is adequate with supplemental oxygen alone, via simple nasal cannula or face mask

Patient Management

Assessment

1. History: Assess for
 a. Time of onset of symptoms
 b. Associated symptoms
 c. History of asthma or other breathing disorders
 d. Choking or other evidence of upper airway obstruction
 e. History of trauma

2. Physical Examination: Assess for
 a. Shortness of breath
 b. Abnormal respiratory rate and/or effort
 c. Use of accessory muscles
 d. Quality of air exchange, including depth and equality of breath sounds
 e. Wheezing, rhonchi, rales, or stridor
 f. Cough
 g. Abnormal color (cyanosis or pallor)
 h. Abnormal mental status

All Rights Reserved V.11-14
i. Evidence of hypoxemia
j. Signs of a difficult airway (short jaw or limited jaw thrust, small thyromental space, upper airway obstruction, large tongue, obesity, large tonsils, large neck, craniofacial abnormalities, excessive facial hair)

Treatment and Interventions

1. Non-Invasive Ventilation Techniques
 a. Use continuous positive airway pressure (CPAP), bilevel positive airway pressure (BiPAP), intermittent positive pressure breathing (IPPB), humidified high-flow nasal cannula (HFNC), and/or bilevel nasal CPAP for severe respiratory distress or impending respiratory failure
 b. Use bag-valve mask (BVM) ventilation in the setting of respiratory failure or arrest

2. Oropharyngeal airways (OPA) and nasopharyngeal airways (NPA)
 Consider the addition of an OPA and/or NPA to make BVM more effective, especially in patients with altered mental status

3. Supraglottic airways (SGA) or extraglottic devices (EGD)
 Consider the use of a SGA or EGD if BVM is not effective in maintaining oxygenation and/or ventilation. Examples include, but are not limited to, the laryngeal mask airway (LMA) or King® laryngeal tube (KLT). This is especially important in children, since endotracheal intubation is an infrequently performed skill in this age group, and has not been shown to improve outcomes

4. Endotracheal Intubation
 a. When less-invasive methods (BVM, SGA/EGD placement) are ineffective, however, use endotracheal intubation to maintain oxygenation and/or ventilation
 b. Other indications may include potential airway obstructions, severe burns, multiple traumatic injuries, altered mental status or loss of normal protective airway reflexes
 c. Monitor clinical signs, pulse oximetry, and capnography for the intubated patient
 d. Video laryngoscopy enhances intubation success rates, and should be used when available. Fiberoptic-assisted endotracheal intubation may be needed if the vocal cords cannot be visualized by other means

5. Gastric decompression may improve oxygenation and ventilation, so it should be considered when there is obvious gastric distention

6. When patients cannot be oxygenated/ventilated effectively by previously mentioned interventions, the provider should consider cricothyroidotomy if the risk of death for not escalating airway management seems to outweigh the risk of a procedural complication

7. Transport to the closest appropriate hospital for airway stabilization should occur when respiratory failure cannot be successfully managed in the prehospital setting

Patient safety considerations

1. Avoid excessive pressures or volumes during BVM
2. Avoid endotracheal intubation, unless less invasive methods fail, since it can be associated with aspiration, oral trauma, worsening of cervical spine injury, malposition of the ET tube (mainstem intubation, esophageal intubation), or adverse effects of sedation, especially in children
3. Once a successful SGA/EGD placement or intubation has been performed, obstruction or displacement of the tube can have further deleterious effects on patient outcome. Tubes should be secured with either a commercial tube holder or tape.

4. Providers who do not routinely use medications for rapid sequence intubation (RSI) should not use RSI on children, since the loss of airway protection with the use of RSI may increase complications. RSI should be reserved for specialized providers operating within a comprehensive program with ongoing training and quality assurance measures.

Notes/Educational Pearls

Key Considerations

1. When compared to the management of adults with cardiac arrest, paramedics are less likely to attempt endotracheal intubation in children with cardiac arrest. Further, paramedics are more likely to be unsuccessful when intubating children in cardiac arrest and complications such as malposition of the ET tube or aspiration can be nearly three times as common in children as compared to adults.

2. Use continuous waveform capnography to detect end-tidal carbon dioxide (ETCO₂). This is an important adjunct in the monitoring of patients with respiratory distress, respiratory failure, and those treated with positive pressure ventilation. It should be used as the standard to confirm extraglottic device and endotracheal tube placement.

3. CPAP, BiPAP, IBBP, HFNC
 Contraindications to these non-invasive ventilator techniques include intolerance of the device, increased secretions inhibiting a proper seal, or recent gastrointestinal and/or airway surgery.

4. Bag-Valve Mask:
 a. Appropriately-sized masks should completely cover the nose and mouth and maintain an effective seal around the cheeks and chin.
 b. Ventilation should be delivered with only sufficient volume to achieve chest rise.
 c. Ventilating breaths should be delivered over one second, with a two second pause between breaths (20 breaths/minute).

5. Orotracheal intubation
 a. Endotracheal tube sizes
Age	Size (mm) – Uncuffed	Size (mm) – Cuffed
Premature	2.5	
Term to 3 months	3.0	
3-7 months	3.5	3.0
7-15 months	4.0	3.5
15-24 months	4.5	3.5
2-15 years	[age(yr)/4]+4	[age(yr)/4]+3.5
 b. Approximate depth of insertion = (3) x (endotracheal tube size)
 c. Confirm successful placement with waveform capnography. Less optimal methods of confirmation include bilateral chest rise, bilateral breath sounds, maintenance of adequate oxygenation, and color change on end-tidal CO₂ colorimetric device. Misting observed in the tube is not a reliable method of confirmation.
d. Ongoing education and hands-on practice is essential to maintain skills. This is especially true for children since pediatric intubation is an infrequently utilized skill for many prehospital providers.

e. Video laryngoscopy may be helpful, if available, to assist with endotracheal intubation.

6. Consideration should be made to dispatch the highest level provider for an EMS system given the potential need for advanced airway placement for patients with severe respiratory distress or failure.

Pertinent Assessment Findings
1. Ongoing assessment is critical when an airway device is in place.
2. Acute worsening of respiratory status or evidence of hypoxemia is can be secondary to displacement or obstruction of the airway device, pneumothorax or equipment failure.

Quality Improvement

Key Documentation Elements
1. Initial vital signs and physical exam.
2. Interventions attempted including the method of airway intervention, the size of equipment used, and the number of attempts to achieve a successful result.
3. Subsequent vital signs and physical exam to assess for change after the interventions.

Performance Measures
1. Percentage of providers that have received hands-on airway training (simulation or non-simulation-based) within the past 2 years.
2. Respiratory rate and oxygen saturation are both measured and documented.
3. Percentage of patients with advanced airway who have waveform capnography used for both initial confirmation and continuous monitoring during transport.
4. Percentage of patients who were managed upon arrival to the emergency department (ED) with each of the following: Bag-valve mask, extraglottic device, or endotracheal intubation.
5. Percentage of intubated patients with endotracheal tube in proper position upon ED arrival.
6. Survival upon ED arrival.

References

All Rights Reserved V.11-14
18. Grmec S. Comparison of three different methods to confirm tracheal tube placement in emergency intubation. *Intensive Care Med*, 2002 28(6), 701-704
24. Kupas DF, Kaufmann RF, Wang HE. Effect of airway-securing method on prehospital

37. Rajesh VT, Singhi S, Kataria S. Tachypnoea is a good predictor of hypoxia in acutely ill infants under 2 months. *Arch Dis Child*, 2000 82(1), 46-49

43. Stiell IG et al. The OPALS Major Trauma Study: Impact of advanced life-support on survival and morbidity. *CMAJ*, 2008 178(9), 1141-1152

Revision Date
September 15, 2014
Bronchospasm (due to Asthma and Obstructive Lung Disease)

(Adapted from an evidence-based guideline created using the National Prehospital Evidence-Based Guideline Model Process)

(9914139 – Respiratory Distress/Asthma/COPD/Croup/Reactive Airway)

Patient Care Goals
1. Alleviate respiratory distress due to bronchospasm
2. Promptly identify and intervene for patients who require escalation of therapy
3. Deliver appropriate therapy by differentiating other causes of respiratory distress

Patient Presentation

Inclusion Criteria
Respiratory distress with wheezing or decreased air entry in patients ≥ 2 years of age, presumed to be due to bronchospasm from reactive airway disease, asthma, or obstructive lung disease. These patients may have a history of recurrent wheezing that improves with beta-agonist inhalers/nebulizers such as albuterol or levalbuterol

1. Symptoms/signs may include:
 a. Wheezing - will have expiratory wheezing unless they are unable to move adequate air to generate wheezes
 b. May have signs of respiratory infection (e.g. fever, nasal congestion, cough, sore throat)
 c. May have acute onset after inhaling irritant
2. This includes:
 a. Asthma exacerbation
 b. Chronic obstructive pulmonary disease (COPD) exacerbation
 c. Wheezing from suspected pulmonary infection (e.g. pneumonia, acute bronchitis)

Exclusion Criteria
Respiratory distress due to a presumed underlying cause that includes one of the following:
1. Anaphylaxis
2. Bronchiolitis (wheezing < 2 years of age)
3. Croup
4. Epiglottitis
5. Foreign body aspiration
6. Submersion/drowning
7. Congestive heart failure
8. Trauma

Patient Management

Assessment
1. History
 a. Onset of symptoms
 b. Concurrent symptoms (fever, cough, rhinorrhea, tongue/lip swelling, rash, labored breathing, foreign body aspiration)
c. Usual triggers of symptoms (cigarette smoke, change in weather, upper respiratory infections)
d. Sick contacts
e. Treatments given
f. Previously intubated
g. Number of emergency department visits in the past year
h. Number of admissions in the past year
i. Number of ICU admissions
j. Family history of asthma, eczema, or allergies
2. Exam
 a. Full set of vital signs (T, BP, RR, P, O₂ sat); waveform capnography is a useful adjunct and
 will show a “sharkfin” waveform in the setting of obstructive physiology
 b. Air entry (normal vs. diminished; prolonged expiratory phase)
 c. Breath sounds (wheezes, crackles, rales, rhonchi, diminished, clear)
 d. Signs of distress (grunting, nasal flaring, retracting, stridor)
 e. Inability to speak full sentences (sign of shortness of breath)
 f. Color (pallor, cyanosis, normal)
 g. Mental status (alert, tired, lethargic, unresponsive)
 h. Signs of distress include:
 i. Apprehension, anxiety, combativeness
 ii. Hypoxia (< 90% oxygen saturation)
 iii. Intercostal/subcostal supraclavicular retractions
 iv. Nasal flaring
 v. Cyanosis

Treatment and Interventions
1. Monitoring
 a. Pulse oximetry and end-tidal CO₂ (ETCO₂) should be routinely used as an adjunct to other
 forms of respiratory monitoring
 b. Check an EKG only if there are no signs of clinical improvement after treating respiratory
 distress
2. Airway
 a. Give supplemental oxygen. Escalate from a nasal cannula to a simple face mask to a non-
 rebreather mask as needed, in order to maintain normal oxygenation
 b. Suction the nose and/or mouth (via bulb, Yankauer, suction catheter) if excessive
 secretions are present
3. Inhaled Medications
 a. Albuterol 5 mg nebulized (or 6 puffs metered dose inhaler) should be administered to all
 patients in respiratory distress with signs of bronchospasm (e.g. known asthmatics, quiet
 wheezers) either by basic life support (BLS) or advanced life support (ALS) providers. This
 medication should be repeated at this dose with unlimited frequency for ongoing distress
 b. Ipratropium 0.5 mg nebulized should be given up to 3 doses, in conjunction with
 albuterol
4. Utility of IV Placement and Fluids
 IVs should be placed when there are clinical concerns of dehydration in order to administer
 fluids, or when administering IV medications

All Rights Reserved V.11-14
5. Steroids
 Methylprednisolone (2 mg/kg, max dose = 125 mg) IV/IM or dexamethasone (0.6 mg/kg, max
dose of 16 mg) IV/IM/PO should be administered in the prehospital setting. Other steroids at
equivalent doses may be given as alternatives.

6. Magnesium
 Magnesium sulfate (40 mg/kg IV, max dose of 2 grams) over 15-30 minutes should be
 administered for severe bronchoconstriction and concern for impending respiratory failure.

7. Epinephrine
 Epinephrine (0.01 mg/kg of 1:1,000 IM, max dose of 0.3 mg) should only be administered for
 impending respiratory failure as adjunctive therapy when there are no clinical signs of
 improvement.

8. Improvement of Oxygenation and/or Respiratory Distress with Non-invasive Airway Adjuncts
 a. Non-invasive positive pressure ventilation via continuous positive airway pressure (CPAP)
 or biphasic positive airway pressure (BiPAP) should be administered for severe
 respiratory distress.
 b. Bag-valve-mask ventilation should be utilized in children with respiratory failure.

9. Supraglottic Devices and Intubation
 Supraglottic devices and intubation should be utilized only if bag-valve-mask ventilation fails.
The airway should be managed in the least invasive way possible.

Patient Safety Considerations
1. Routine use of lights and sirens is not recommended during transport.
2. Giving positive pressure in the setting of bronchoconstriction, either via a supraglottic airway
 or intubation, increases the risk of air trapping, which can lead to pneumothorax and
 cardiovascular collapse. So, these interventions should be reserved for situations of
 respiratory failure.

Notes/Educational Pearls
Key Considerations
1. Inhaled magnesium sulfate should not be administered.
2. Heliox should not be administered.
3. COPD patients not in respiratory distress should be given oxygen to maintain adequate
 oxygen saturation above 90%.
4. Nebulizer droplets can carry viral particles, so additional personal protective equipment
 should be considered, including placement of a surgical mask over the nebulizer to limit
 droplet spread.

Pertinent Assessment Findings
In the setting of severe bronchoconstriction, wheezing might not be heard. Patients with known
asthma who complain of chest pain or shortness of breath should be empirically treated, even if
wheezing is absent.

Quality Improvement
Key Documentation Elements
Document key aspects of the exam to assess for a change after each intervention:
1. Respiratory rate.
2. Oxygen saturation.
3. Use of accessory muscles
4. Breath sounds
5. Air entry
6. Mental status
7. Color

Performance Measures
1. CPAP/BiPAP utilization
2. Time to administration of specified interventions in the protocol
3. Rate of administration of accepted therapy (whether or not certain medications/interventions were given)
4. Change in vital signs (i.e. heart rate, blood pressure, temperature, respiratory rate, pulse oximeter, capnography values)
5. Time to administration of specified interventions in the protocol
6. Number of advanced airway attempts
7. Mortality

References
1. Birken CS, Parkin PC, Macarthur C. Asthma severity scores for preschoolers displayed weaknesses in reliability, validity, and responsiveness. *Journal of Clinical Epidemiology*, 2004 57(11), 1177-1181
8. Kunkov S, Pinedo V, Johnson Silver E, Crain EF. Predicting the need for hospitalization in acute childhood asthma using end-tidal capnography. *Pediatric Emergency Care*, 2005 21(9), 574-577
26. Edmonds M, Camargo CA, Pollack CV, Rowe BH. Early use of inhaled corticosteroids in the emergency department treatment of acute asthma. *Cochrane Database of Systematic Reviews*
27. Gordon S, Tompkins T, Dayan PS. Randomized trial of single-dose intramuscular dexamethasone compared with prednisolone for children with acute asthma. *Pediatric Emergency Care*, 2007 23(8), 521-527

43. Warner GS. Evaluation of the effect of prehospital application of continuous positive airway pressure therapy in acute respiratory distress. *Prehospital and Disaster Medicine*, 2010 25(1), 87-91

Revision Date
September 15, 2014
Pulmonary Edema

(9914137 – Pulmonary Edema/CHF)

Patient Care Goals

1. Decrease respiratory distress and work of breathing
2. Maintaining adequate oxygenation and perfusion
3. Direct supportive efforts towards decreasing afterload and increasing preload

Patient Presentation

Inclusion Criteria

1. Respiratory distress with presence of rales
2. Clinical impression consistent with congestive heart failure

Exclusion Criteria

1. Clinical impression consistent with infection (e.g. fever)
2. Clinical impression consistent with asthma/COPD

Patient Management

Assessment

1. History
 a. Use of diuretics and compliance
 b. Weight gain
 c. Leg swelling
 d. Orthopnea
2. Exam
 a. Breath sounds – crackles/rales
 b. Lower extremity edema
 c. JVD
 d. Cough and/or productive cough with pink/frothy sputum
 e. Diaphoresis
 f. Chest discomfort
 g. Hypotension
 h. Shock
 i. Respiratory distress, assess:
 i. Patient’s ability to speak in full sentences
 ii. Respiratory accessory muscle use

Treatment and Interventions

1. Manage airway as necessary
2. Provide supplemental O₂ as needed to maintain O₂ saturation > 94%
3. Initiate monitoring and perform 12-lead EKG
4. Establish IV access
5. Nitroglycerin 0.4 mg SL, can repeat q 3-5 minutes as long as SBP > 100 (if range not desired use q 3 minutes)
6. CPAP/BiPAP Consider advanced airway for severe distress or if not improving with less invasive support
7. If suspect high altitude pulmonary edema, follow Altitude Illness guideline

Patient Safety Considerations
No specific recommendations

Notes/Educational Pearls
Key Considerations
1. Differential:
 a. MI
 b. CHF
 c. Asthma
 d. Anaphylaxis
 e. Aspiration
 f. COPD
 g. Pleural effusion
 h. Pneumonia
 i. PE
 j. Pericardial tamponade
 k. Toxin exposure
2. Non-Invasive Positive Pressure Ventilation:
 a. Contraindications:
 i. Hypoventilation
 ii. Altered level of consciousness
 iii. Airway compromise
 iv. Aspiration risk
 v. Pneumothorax
 vi. Facial trauma/burns
 vii. Systolic BP < 90 mmHg
 viii. Recent oropharyngeal/tracheal/bronchial surgery
 b. Benefits:
 i. Increased oxygenation and perfusion by reducing work of breathing
 ii. Maintaining inflation of atelectatic alveoli
 iii. Improving pulmonary compliance
 iv. Decreases respiratory rate and the work of breathing, HR, and SBP
 v. Improves delivery of bronchodilators
 vi. Reduces preload and afterload, improving cardiac output
 c. Complications:
 i. Most common is anxiety
 ii. Theoretical risk of hypotension and pneumothorax as NIPPV increases intrathoracic pressure which decreases venous return and cardiac output
 iii. Sinusitis
 iv. Skin abrasions
 v. Conjunctivitis – minimized with proper size mask
 vi. Potential for barotrauma - pneumothorax or pneumomediastinum (rare)
3. Allow patient to remain in position of comfort. Patients may decompensate if forced to lie down.
4. CHF is a common cause of pulmonary edema. Other causes include:
 a. Medications
 b. High altitude exposure
 c. Kidney failure
 d. Lung damage caused by gases or severe infection
 e. Major injury
5. Avoid nitroglycerin in patients who have taken sildenafil in the last 24 hours, or tadalafil or vardenafil in the last 48 hours. Nitroglycerin reduces left ventricular (LV) filling pressure primarily via venous dilation. At higher doses the drug variably lowers systemic afterload and increases stroke volume and cardiac output. Although some have advocated early use of ACE inhibitor in patients with acute decompensated heart failure, we do not recommend this approach. There are limited data on the safety and efficacy of initiating new ACE inhibitor or angiotensin receptor blockers (ARB) therapy in the early phase of therapy of acute decompensated heart failure (i.e. the first 12 to 24 hours)
6. There is controversy regarding the use of Lasix in acute pulmonary edema in the prehospital setting, and use is not recommended at this time. Lasix has been widely used in the treatment of CHF and acute pulmonary edema despite limited studies on its effectiveness. Since pulmonary edema is more commonly a problem of volume distribution than overload, administration of furosemide provides no immediate benefit for most patients. There are potential risks of hypokalemia, arrhythmias and increased systemic vascular resistance through enhancement of the Renin Angiotensin System, all of which may be deleterious to the acute CHF patient. Misdiagnosis of CHF and subsequent inducement of inappropriate diuresis can lead to increased morbidity and mortality in patients
7. Nitrates provide both subjective and objective improvement, and might decrease intubation rates, incidence of MIs, and mortality. High-dose nitrates can reduce both preload and afterload and potentially increase cardiac output. Because many CHF patients present with very elevated arterial and venous pressure, frequent doses of nitrates may be required to control blood pressure and afterload. High dose nitrate therapy, nitroglycerin SL, 0.8–2 mg q 3–5 minutes has been used in patients in severe distress such as hypoxia, altered mentation, diaphoresis, or speaking in one word sentences. A concern with high doses of nitrates is that some patients are very sensitive to even normal doses and may experience marked hypotension; it is therefore critical to monitor blood pressure during high-dose nitrate therapy

Quality Improvement

Key Documentation Elements
1. Vital signs
2. Oxygen saturation
3. Time of intervention
4. Response to interventions

Performance Measures
1. Time to NIPPV
2. Number of CPAP/BiPAP patients who require intubation
3. Time to clinical improvement
4. Assessment/auscultation of lung sounds before and after each intervention

References

Revision Date
September 15, 2014
Trauma

General Trauma Management

(No NEMSIS category)

Patient Care Goals

1. Rapid assessment and management of life-threatening injuries
2. Safe movement of patient to prevent worsening injury severity
3. Rapid and safe transport to the appropriate level of trauma care

Patient Presentation

Inclusion Criteria

Patients of all ages who have sustained an injury as a result of mechanical trauma. This includes both blunt and penetrating injury as well as burns

Exclusion Criteria

No specific recommendations

Patient Management

Assessment

1. Assess scene safety: evaluate for hazards to EMS personnel, patient, bystanders
 a. Determine number of patients
 b. Determine mechanism of injury
 c. Request additional resources if needed. Weigh the benefits of waiting for additional resources against rapid transport to definitive care
 d. Consider declaration of mass casualty incident if needed
2. Use appropriate personal protective equipment
3. Primary survey
 a. Hemorrhage control
 Assess for and stop severe hemorrhage (see Extremity Trauma/External Hemorrhage Management guideline)
 b. Airway
 i. Assess airway patency, ask patient to talk to assess stridor and ease of air movement
 ii. Look for injuries that may lead to airway obstruction including unstable facial fractures, expanding neck hematoma, blood or vomitus in the airway, facial burns/inhalation injury
 iii. Evaluate mental status for ability to protect airway (GCS < 8 likely to require airway protection)
 c. Breathing
 i. Assess respiratory rate and pattern
 ii. Assess symmetry of chest wall movement
 iii. Listen bilaterally on lateral chest wall for breath sounds
 d. Circulation
 i. Assess blood pressure and heart rate

All Rights Reserved V.11-14
ii. Signs of hemorrhagic shock include: tachycardia, pale, cool clammy skin, capillary refill > 2 seconds

e. Disability
 i. Perform neurologic status assessment (see Appendix VI)
 ii. Assess gross motor movement of extremities
 iii. Evaluate for clinical signs of traumatic brain injury with herniation including: unequal pupils, lateralizing motor signs or posturing

f. Exposure
 i. Rapid evaluation of entire body to identify sites of penetrating wounds or other blunt injuries. Be sure to roll patient and view back
 ii. Prevent hypothermia

Treatment and Interventions
1. Airway
 a. Establish patent airway with cervical spine precautions per Airway Management guideline and Spinal Care guideline
 b. If respiratory efforts inadequate, assist with bag-mask ventilation, consider airway adjuncts
 c. If impending airway obstruction or altered mental status resulting in inability to maintain airway patency, secure definitive airway

2. Breathing
 a. If absent or diminished breath sounds in a hypotensive patient, consider tension pneumothorax, perform needle decompression
 b. For open chest wound, place semi-occlusive dressing
 c. Monitor oxygen saturation, provide supplemental oxygen

3. Circulation
 a. Control external hemorrhage per Extremity Trauma/External Hemorrhage Management guideline
 b. If pelvis unstable and patient is hypotensive, place pelvic binder or sheet to stabilize pelvis
 c. Establish IV access
 d. Fluid Resuscitation
 i. Adults
 1. If SBP < 90 mmHg or HR > 120, give bolus of 1 liter crystalloid solution and reassess
 2. For adult patients with penetrating trauma target SBP 90mmHg (or palpable radial pulse)
 3. For adult patients with head injury, target SBP 110-120. Hypotension should be avoided to maintain cerebral perfusion
 ii. Pediatrics
 1. If child demonstrates tachycardia for age with signs of poor perfusion (low BP, > 2 second capillary refill, altered mental status, hypoxia, weak pulses, pallor, or mottled/cool skin): give 20ml/kg crystalloid bolus and reassess.
 2. Target is normal BP for age (see Normal Vital Signs, Appendix VII)

4. Disability
 If clinical signs of traumatic brain injury, see Head Injury guideline
5. Exposure
Avoid hypothermia. Remove wet clothing. Cover patient to prevent further heat loss

Note that patients with major hemorrhage, hemodynamic instability, penetrating torso trauma, or signs of traumatic brain injury often require rapid surgical intervention. Minimize scene time (goal 10 minutes or less) and initiate rapid transport to a trauma center.

Decisions regarding transport destination should be based on the CDC Field Triage Guidelines for Trauma Patients (below).

Secondary Assessment, Treatment and Interventions

1. Assessment
 a. Obtain medical history from patient or family including:
 i. Allergies
 ii. Medications
 iii. Past medical and surgical history
 iv. Events leading up to the injury
 b. Secondary Survey: Head to toe physical exam
 i. Head
 1. Palpate head and scalp and face and evaluate for soft tissue injury or bony crepitus
 2. Assess pupils
 ii. Neck
 1. Check for:
 a. Contusions
 b. Abrasions
 c. Hematomas
 d. JVD
 2. Palpate for crepitus
 3. Evaluate for spinal tenderness
 iii. Chest
 1. Palpate for instability/crepitus
 2. Listen to breath sounds
 3. Inspect for penetrating or soft tissue injuries
 iv. Abdomen
 1. Palpate for tenderness
 2. Inspect for penetrating or soft tissue injuries
 v. Pelvis
 1. Inspect for penetrating or soft tissue injuries
 2. Palpate once for instability by gentle AP pressure with the heels of the hands on the symphysis pubis and then medial pressure at the iliac crests bilaterally
 vi. Back
 1. Log roll patient to maintain spinal alignment
 2. Inspect for penetrating or soft tissue injuries
 3. Palpate for spinal tenderness
vii. Neurologic status assessment (see Appendix VI)
 1. Serial assessment of mental status
 2. Gross exam of motor strength all four extremities

viii. Extremities
 1. Assess for fracture/deformity
 2. Assess peripheral pulses/capillary refill

c. Additional treatment considerations
 i. Maintain spine precautions per Spinal Care guideline
 ii. Splint obvious extremity fractures per Extremity Trauma/External Hemorrhage Management guideline
 iii. Provide pain medication per Pain Management guideline

Patient Safety Considerations
1. Life threatening injuries identified on primary survey should be managed immediately and rapidly transported to a trauma center. Secondary survey should be performed while en route
2. Monitor patient for deterioration over time with serial vital signs and repeat neurologic status assessment
 a. Patients with compensated shock may not manifest hypotension until severe blood loss has occurred
 b. Patients with traumatic brain injury may deteriorate as intracranial swelling and hemorrhage increase
3. Anticipate potential for progressive airway compromise in patients with trauma to head and neck

Notes/Educational Pearls

Key Considerations
1. Optimal trauma care requires a structured approach to the patient, emphasizing ABCDE
2. Target scene time < 10 minutes for unstable patients or those likely to need surgical intervention
3. Provider training should include the CDC Guidelines for Field Triage
4. Frequent reassessment of the patient is important
 a. If patient develops difficulty with ventilation, reassess breath sounds for development of tension pneumothorax
 b. If extremity hemorrhage is controlled with pressure dressing or tourniquet, reassess for evidence of continued hemorrhage
 c. If mental status declines, reassess ABCs
5. Withholding and termination of resuscitative efforts
 a. Resuscitative efforts should be withheld for trauma patients with the following:
 i. Decapitation
 ii. Hemicorpectomy
 iii. Signs of rigor mortis or dependent lividity
 iv. Blunt trauma: apneic, pulseless, no organized activity on cardiac monitor
 b. Resuscitative efforts may be terminated in patients with traumatic arrest who have no return to spontaneous circulation after 15-30 minutes of resuscitative efforts, including minimally interrupted CPR
Quality Improvement

Key Documentation Elements
1. Mechanism of injury
2. Serial vital signs and neurologic status assessments
3. Scene time
4. Procedures performed and patient response

Performance Measures
1. Monitor scene time for unstable patients
2. Monitor appropriateness of procedures
3. Monitor appropriate airway management

References
6. Prehospital Trauma Life Support, 6th Ed

Revision Date
September 15, 2014
2011 Guidelines for Field Triage of Injured Patients

Measure vital signs and level of consciousness

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glasgow Coma Scale < 12</td>
<td>NO</td>
</tr>
<tr>
<td>Systolic Blood Pressure < 90 mmHg</td>
<td>NO</td>
</tr>
<tr>
<td>Respiratory Rate > 20 breaths per minute, or need for ventilatory support</td>
<td>NO</td>
</tr>
</tbody>
</table>

Assess anatomy of injury
- All penetrating injuries to head, neck, torso, and extremities proximal to elbow or knee
- Chest wall instability or deformity (e.g., flail chest)
- Two or more proximal long-bone fractures
- Crushed, degloved, mangled, or pulseless extremity
- Amputation proximal to wrist or ankle
- Pelvic fractures
- Open or depressed skull fracture
- Paralysis

Transport to a trauma center, Steps 1 and 2 attempt to identify the most seriously injured patients. These patients should be transported preferentially to the highest level of care within the defined trauma system.

Assess mechanism of injury and evidence of high-energy impact
- Falls
 - Adults: >20 feet (one story is equal to 10 feet)
 - Children: >10 feet or two or three times the height of the child
- High-risk auto crash
 - Infusion, including roof: >12 inches occupant site; >18 inches any site
 - Ejection (partial or complete) from automobile
 - Death in same passenger compartment
 - Vehicle telemetry data consistent with a high risk of injury
 - Auto vs. pedestrian/bicyclist thrown, run over, or with significant (>20 mph) impact
 - Motorcycle crash >20 mph

Transport to a trauma center, which, depending upon the defined trauma system, need not be the highest level trauma center.

Assess special patient or system considerations
- Older Adults
 - Risk of injury/death increases after age 55 years
 - SBP <110 may represent shock after age 65
 - Low impact mechanisms (e.g., ground level falls) may result in severe injury
- Children
 - Should be triaged preferentially to pediatric capable trauma centers
- Anticoagulants and bleeding disorders
 - Patients with head injury are at high risk for rapid deterioration
- Burns
 - Without other trauma mechanism: triage to burn facility
 - With trauma mechanism: triage to trauma center
- Pregnancy >20 weeks
- EMS provider judgment

Transport to a trauma center or hospital capable of timely and thorough evaluation and initial management of potentially serious injuries. Consider consultation with medical control.

When in doubt, transport to a trauma center.

Find the plan to save lives at www.cdc.gov/fieldtria

Source: Centers for Disease Control and Prevention, US Department of Health and Human Services
Blast Injuries

(9914045 – Exposure – Explosive/Blast Injury)

Patient Care Goals

1. Maintain patient and provider safety by identifying ongoing threats at the scene of an explosion
2. Identify multi-system injuries which may result from a blast, including possible toxic contamination
3. Prioritize treatment of multi-system injuries to minimize patient morbidity

Patient Presentation

Inclusion Criteria

Patients exposed to explosive force (injuries may include any or all of the following: blunt and/or penetrating trauma, burns, pressure-related injuries (barotrauma), and toxic chemical contamination)

Exclusion Criteria

No specific recommendations

Patient Management

Assessment

1. Hemorrhage Control: Assess for and stop severe hemorrhage (see Extremity Trauma/External Hemorrhage Management guideline) Airway: Assess airway patency. Consider possible thermal or chemical burns to airway
2. Breathing: Evaluate adequacy of respiratory effort, oxygenation, quality of lung sounds, and chest wall integrity. Consider possible pneumothorax or tension pneumothorax (as a result of penetrating/blunt trauma or barotrauma)
4. Disability: Assess patient responsiveness (AVPU) and level of consciousness (GCS). Assess pupils. Assess gross motor movement of extremities
5. Exposure: Rapid evaluation of entire skin surface, including back (log roll), to identify blunt or penetrating injuries

Treatment and Interventions

1. Airway: Secure airway, utilizing airway maneuvers, airway adjuncts, supraglottic device, or endotracheal tube (see Airway Management guideline) If thermal or chemical burn to airway is suspected, early airway control is vital
2. Breathing:
 a. Provide supplemental oxygen to maintain O₂ saturation ≥ 94%
 b. Assist respirations as needed
 c. Cover any open chest wounds with semi-occlusive dressing
 d. If patient has evidence of tension pneumothorax (decreased or absent breath sounds and signs of shock), perform needle decompression

All Rights Reserved V.11-14
3. Circulation:
 a. Control any external hemorrhage (see Extremity Trauma/ External Hemorrhage Management guideline)
 b. Establish IV access with two large bore IVs or IOs
 i. Administer NS or LR as per General Trauma guideline
 ii. If patient is burned, administer NS or LR as per Burn guideline
4. Disability:
 a. If evidence of head injury, treat as per Head Injury guideline
 b. Apply spinal precautions as per Spinal Care guideline
 c. Monitor GCS during transport to assess for changes
5. Exposure: Keep patient warm to prevent hypothermia

Patient Safety Considerations
1. Ensuring scene safety is especially important at the scene of an explosion. Consider possibility of subsequent explosions, structural safety, possible toxic chemical contamination, the presence of noxious gasses, and the like. In a possible terrorist event, consider the possibility of secondary explosive devices
2. Remove patient from the scene as soon as is practical and safe
3. If the patient has sustained burns (thermal, chemical, or airway), consider transport to specialized burn center

Notes/Educational Pearls

Key Considerations
1. Scene safety is of paramount importance when responding to an explosion or blast injury
2. Patients sustaining blast injury may sustain complex, multi-system injuries including: blunt and penetrating trauma, shrapnel, barotrauma, burns, and toxic chemical exposure
3. Consideration of airway injury, particularly airway burns, should prompt early and aggressive airway management
4. Minimize IV fluid resuscitation in patients without signs of shock
5. Consider injuries due to barotrauma
 a. Tension pneumothorax
 b. Tympanic membrane perforation resulting in deafness. This may complicate the evaluation of their mental status and their ability to follow commands

Pertinent Assessment Findings
Evidence of multi-system trauma, especially airway injury/burn, barotrauma to lungs, and toxic chemical contamination

Quality Improvement

Key Documentation Elements
1. Documentation of scene safety
2. Airway status and intervention
3. Breathing status: quality of breath sounds (equal bilaterally), adequacy of respiratory effort, and oxygenation
4. Documentation of burns
5. Documentation of possible toxic chemical contamination
Performance Measures
1. Airway assessment and early and aggressive management
2. Appropriate IV fluid management
3. Transport to trauma or burn center

References

Revision Date
September 15, 2014
Burns

(9914085 – Burns – Thermal)

Patient Care Goals
Minimize tissue damage and patient morbidity from burns

Patient Presentation
Observe and document:
1. Airway – stridor, hoarse voice
2. Mouth and nares – redness, blisters, soot, singed hairs
3. Breathing – rapid, shallow, wheezes, rales
4. Skin – Estimate Body Surface Area (BSA) and depth (partial v. full thickness)
5. Associated trauma – blast, fall, assault

Inclusion Criteria
Patients sustaining thermal burns

Exclusion Criteria
Electrical, chemical, and radiation burns (see *Toxins and Environmental* section)

Special transport considerations:
1. Transport to most appropriate trauma center when there is airway or respiratory involvement, or when multi-trauma or blast injury is suspected
2. Consider transport directly to burn center if BSA > 20% partial thickness, BSA > 10% full thickness involvement of hands/feet, genitalia, face; circumferential burns
3. Consider air ambulance transportation for long transport times, pain control requiring deep sedation, and airway concerns that might necessitate advanced airway management

Scene Management:
Assure crew safety: power off, electrical lines secure, gas off, no secondary devices, hazmat determinations made, proper protective attire including breathing apparatus may be required

Patient Management

Assessment
1. Circumstances of event-- consider:
 a. related trauma in addition to the burns
 b. inhalation exposures such as CO and cyanide
 c. pediatric or elder abuse
2. Follow ABCs of resuscitation
3. If evidence of possible airway burn, consider aggressive airway management.
4. Consider spinal immobilization (See *Spinal Care* guideline)
5. Estimate BSA burned and depth of burn (See burn related tables in *Appendix V*)
6. Document pain scale
Treatments and interventions

1. Stop the burning:
 a. Soak clothing and skin with water if burning or smoldering, then remove clothing if not stuck to the patient
 b. Remove jewelry. It may be hot
 c. Leave blisters intact
2. Minimize burn wound contamination. Cover burns with dry dressing or clean sheet.
3. Vital signs including \(\text{SPO}_2 \), consider SPCO and ETCO\(_2\) if available
 a. ETCO\(_2\) monitoring may be particularly useful to monitor respiratory status in patients receiving significant doses of narcotic pain medication
 b. Cardiac monitor is important in chemical inhalations and electrical burns.
4. Supplement oxygen titrated to \(\text{SPO}_2 \), if available. Give to all burn patients rescued from a confined space
5. Establish IV access, avoid placement through burned skin
6. Evaluate distal circulation in circumferentially burned extremities
7. Consider early management of pain and nausea/vomiting.
8. Initiate fluid resuscitation: Use lactated ringers or normal saline
 a. If patient in shock, give fluid per shock protocol
 b. If patient not in shock: Begin fluids based on estimated TBSA (see Initial Fluid Rate Chart for Burns in Appendix V). For children, use length-based tape for weight estimate
 c. Initial fluid rate can also be calculated as: body weight (kg) \(\times \) TBSA = cc of fluid to be given in first 2 hours
9. Prevent systemic heat loss – keep patient warm

Special treatment considerations

1. If blast mechanism, see Blast Injury guideline
2. Airway burns can rapidly lead to upper airway obstruction and respiratory failure
3. Have a high index of suspicion for cyanide poisoning in a patient with depressed GCS, respiratory difficulty and cardiovascular collapse in the setting of an enclosed-space fire. Give antidote (hydroxocobalamin), if available, in this circumstance
4. Particularly in closed space fires, carbon monoxide toxicity is a consideration; pulse oximetry may not be accurate; see Carbon Monoxide Poisoning guideline
5. For specific chemical exposures (cyanide, hydrofluoric acid, other acids and alkali) see Chemical Burn guideline
6. Consider contamination and notification of receiving facility of potentially contaminated patient (e.g. meth lab incident)

Notes/Educational Pearls

1. Onset of stridor and change in voice are sentinel signs of potentially significant airway burns, which may rapidly lead to airway obstruction or respiratory failure
2. If the patient is not in shock, the fluid rates recommended above will adequately maintain patient’s fluid volume per the Parkland Formula
3. Pain management is critical in acute burns

Quality Improvement
Burn trauma is relatively uncommon. Providers should receive regular training on burn assessment and management

All Rights Reserved V.11-14
Key Documentation Elements
1. Initial airway status
2. Body surface area of second and third degree burns
3. Mechanism of burn injury
4. Pulse and capillary refill exam distally on any circumferentially burned extremity
5. Pain scale documentation and pain management

Performance Measures
1. Patient transported to most appropriate hospital, preferably a burn center
2. Pain scale documented and pain appropriately managed
3. Airway assessment and management appropriately documented

References
2. Fluid Rate charts (based on Parkland formula) and TBSA diagrams courtesy of the University of Utah Burn Center; 2014

Revision Date
September 15, 2014
Extremity Trauma / External Hemorrhage Management

(9914097 – Extremity)

Patient Care Goals
1. Minimize blood loss from extremity hemorrhage
2. Avoid hemorrhagic shock as a result of extremity hemorrhage
3. Minimize pain in potential fractures or dislocations

Patient Presentation

Inclusion Criteria
1. Traumatic extremity hemorrhage (external hemorrhage)
2. Potential extremity fractures or dislocations

Exclusion Criteria
No specific recommendations

Patient Management

Assessment
1. Evaluate for obvious deformity, shortening, rotation, or instability
2. Neuro status of extremity
 a. Sensation to light touch
 b. Distal movement of extremity
3. Vascular status of extremity
 a. Pallor
 b. Pulse
 c. Capillary refill
 d. Degree of bleeding/blood loss with assessment of the color of the blood (venous or arterial); if it is pulsatile or not

Treatments and Interventions
1. Manage bleeding
 a. Apply direct pressure to bleeding site, followed by pressure dressing.
 b. If direct pressure/pressure dressing is ineffective or impractical:
 i. If the bleeding site is amenable to tourniquet placement, apply tourniquet to extremity
 ii. If the bleeding site is not amenable to tourniquet placement (i.e. junctional injury), apply a topical hemostatic agent with direct pressure
 iii. Tourniquet should be placed 2-3 cm proximal to wound, not over a joint, and tightened until bleeding stops. If bleeding continues, place a second tourniquet proximal to the first
 iv. For thigh wounds, consider placement of two tourniquets, side-by-side, and tighten sequentially to eliminate distal pulse
 c. Groin/axillary injury
 i. Apply direct pressure to wound
 ii. If still bleeding, pack wound tightly with gauze and continue direct pressure
iii. Consider hemostatic adjuncts

2. Manage pain: See **Pain Management** guideline
 a. Pain management should be strongly considered for patients with suspected fractures
 b. If tourniquet placed, an alert patient will likely require pain medication to manage tourniquet pain

3. Stabilize suspected fractures/dislocations
 a. If distal vascular function is compromised, gently attempt to restore normal anatomic position. Strongly consider pain management before attempting to move a suspected fracture
 b. Use splints as appropriate to limit movement of suspected fracture
 i. Reassess distal neurovascular status after any manipulation or splinting of fractures/dislocations
 c. Elevate extremity fractures above heart level whenever possible to limit swelling
 d. Apply ice/cool packs to limit swelling in suspected fractures or soft tissue injury. Do not apply ice directly to skin

Patient Safety Considerations
1. If tourniquet used, ensure that it is sufficiently tight to occlude the distal pulse, in order to avoid compartment syndrome
2. If tourniquet used, ensure that it is well marked and visible and that all subsequent providers are aware of the presence of the tourniquet. Do not cover with clothing or dressings
3. Time of tourniquet placement should be prominently marked on the patient
4. If pressure dressing or tourniquet used, frequently re-check to determine if bleeding has restarted. Check for blood soaking through the dressing or continued bleeding distal to the tourniquet. Do NOT remove tourniquet or dressing in order to assess bleeding

Notes/Educational pearls

Key Considerations
1. Tourniquet may be placed initially to stop obvious severe hemorrhage, then replaced later with pressure dressing after stabilization of ABCs and packaging of patient
 Tourniquet should NOT be removed if:
 a. Transport time short (less than 30 minutes)
 b. Amputation or near-amputation
 c. Unstable or complex multiple-trauma patient
 d. Unstable clinical or tactical situation
2. If tourniquet replaced with pressure dressing, leave loose tourniquet in place so it may be retightened if bleeding resumes. Survival markedly improved when tourniquet placed before shock ensues
3. Commercial/properly tested tourniquets are preferred over improvised tourniquets
4. Arterial pressure points are not effective in controlling hemorrhage

Quality Improvement

Key Documentation Elements
1. Vital signs and vascular status of extremity after placement of tourniquet, pressure dressing, or splint
2. Documentation of elimination of distal pulse after tourniquet placement
3. Time of tourniquet placement
Performance Measures

1. Proper placement of tourniquet (location, elimination of distal pulse)
2. Proper marking and timing of tourniquet placement and notification of subsequent providers of tourniquet placement
3. Appropriate splinting of fractures

Prehospital External Hemorrhage Control Protocol

![Flowchart of Prehospital External Hemorrhage Control Protocol]

From: Bulger, et al. 2014

References

Revision Date
September 15, 2014
Facial Trauma

(No NEMSIS category)

Patient Care Goals
1. Preservation of vision
2. Preservation of dentition
3. Preservation of a patent airway

Patient Presentation

Inclusion Criteria
Isolated facial injury, including trauma to the eyes, nose, ears, midface, mandible, dentition

Exclusion Criteria
1. General Trauma (see General Trauma Management guideline)
2. Burn trauma (see Burns guideline)

Patient Management

Assessment
1. Patient medications with focus on blood thinners/anti-platelet agents
2. ABCs with particular focus on ability to keep airway patent
 a. Stable midface
 b. Stable mandible
 c. Stable dentition: poorly anchored teeth require vigilance for possible complete avulsion
3. Bleeding (which may be severe: epistaxis, oral trauma, facial lacerations)
4. Cervical spine pain or tenderness (see Spinal Care guideline)
5. Mental status assessment for possible traumatic brain injury (see Head Injury guideline)
6. Gross vision assessment
7. Dental avulsions
8. Any tissue or teeth avulsed should to be collected. Lost teeth not recovered on scene may be in the airway
9. Overall trauma assessment based on the mechanism of injury
10. Specific re-examination geared toward airway and ability to ventilate adequately

Treatment and Interventions
1. Oxygen supplementation based on hypoxia to maintain O₂ saturation > 94%; use ETCO₂ to help monitor for hypoventilation and apnea
2. IV access, as needed for fluid or pain and anti-emetic medication (more likely) administration
3. Pain medication as per Pain Management guideline
4. Avulsed tooth:
 a. Avoid touching the root of the avulsed tooth. Do not wipe off tooth
 b. Pick up at crown end. If dirty, rinse off under cold water for 10 seconds
 c. Place in milk or saline as the storage medium. Alternatively patient can hold tooth in mouth using own saliva as storage medium
5. Eye trauma:
 a. Consider eye shield for any significant eye trauma
b. If globe is avulsed do not put back into socket: cover with moist saline dressings and then place cup over it

6. Mandible unstable:
 a. Expect patient cannot spit/swallow effectively. Have suction readily available.
 b. If spine cleared (see Spinal Care guideline), transport sitting up with spit/emesis basin

7. Epistaxis:
 a. Squeeze nose (or have patient do so) for 10 – 15 minutes continuously.
 b. If oxymetazoline or neosynephrine is carried, it can be applied intra-nasally prior to applying nasal pressure

8. Nose/ear avulsion:
 a. Recover tissue if it does not waste scene time
 b. Transport with tissue wrapped in sterile gauze moistened with sterile saline
 c. Severe ear and nose lacerations can be addressed with a protective sterile dressing

Patient Safety Considerations
1. Frequent reassessment of airway
2. Cervical spine clearance (per Spinal Care guideline) to enable transport sitting up for difficulty with bleeding, swallowing, or handling secretions

Notes/Educational Pearls

Key Considerations
1. Airway may be compromised because of fractures or bleeding
2. After nasal fractures, epistaxis may be posterior and may not respond to direct pressure over the nares. This may result in bleeding running down posterior pharynx, potentially compromising airway
3. Protect avulsed tissue and teeth. Avulsed teeth may be successfully re-implanted if done so in a very short period after injury. Use sterile dressing for ear and nose cartilage

Pertinent Assessment Findings
1. Unstable facial fractures that can abruptly compromise airway
2. Loose teeth and retro-pharynx bleeding

Quality Improvement

Key Documentation Elements
1. Airway patency and reassessment
2. Degree and location of hemorrhage
3. Mental status (GCS or AVPU)
4. Technique used to transport tissue or teeth
5. Eye exam documented, when applicable
6. Attempt to clear cervical spine
7. Recognition of risk of blood thinners

Performance Measures
1. Appropriate airway management and satisfactory oxygenation
2. Aspiration did not occur during EMS care
3. Tissue was usable or tooth could be re-implanted
4. Bleeding was properly addressed
5. Eye trauma was properly addressed

References
No specific recommendations

Revision Date
September 15, 2014
Head Injury

(9914101 – Head)

Patient Care Goals

Limit disability and mortality from head injury by:
1. Promoting adequate oxygenation
2. Promoting adequate cerebral perfusion
3. Limiting development of increased intracranial pressure
4. Limiting secondary brain injury

Patient Presentation

Inclusion Criteria
Adult or pediatric patient with blunt or penetrating head injury
(LOC or amnesia not required)

Exclusion Criteria
No specific recommendations

Patient Management

Assessment
1. Maintain cervical stabilization (see *Spinal Care* guideline)
2. Primary survey: Use “Approach to Injured Patient”
3. Monitoring:
 a. Continuous pulse oximetry
 b. Frequent systolic and diastolic blood pressure measurement
 c. Initial neurologic status assessment (see Neurologic Status Assessment in Appendix VI),
 and reassessment with any change in mentation
 d. Moderate/severe head injury: apply continuous waveform ETCO$_2$ if available
4. Secondary survey pertinent to isolated head injury:
 a. Head:
 Gently palpate skull to evaluate for depressed or open skull fracture
 b. Eyes:
 i. Evaluate pupil size and reaction to light to establish baseline
 ii. Reassess if decrease in mentation
 c. Nose/mouth/ears:
 Evaluate for blood/fluid drainage
 d. Face:
 Evaluate for bony stability
 e. Neck:
 Palpate for cervical spine step-off
 f. Neurologic:
 i. Perform neurologic status assessment (as above)
 ii. Evaluate for focal neurologic deficit: motor and sensory
Treatment and Interventions

Note that these are not necessarily the order they are to be done, but are grouped by conceptual areas

1. Airway:
 a. **Oxygen**: prevent any desaturation < 90%; use supplemental O₂ as needed to maintain O₂ saturation ≥ 94%
 b. If patient unable to maintain airway, consider oral airway (nasal airway should not be used with significant facial injury or possible basal skull fracture)
 c. Oral endotracheal intubation: use only if BVM ventilation ineffective in maintaining oxygenation or if airway is continually compromised. Nasal intubation should not be used in patients with head injury

2. Breathing:
 a. **Moderate / severe head injury**: Continuous waveform capnography and EtCO₂ measurement if available
 b. Supraglottic airway / endotracheal intubation only if BVM ventilation inadequate to maintain adequate oxygenation. Target EtCO₂ 35-40 mmHg
 c. **Severe head injury with signs of herniation**: Hyperventilation to target EtCO₂ 30-35 mmHg. This is a short-term option, and is ONLY for severe head injury (GCS ≤ 8 or U (unresponsive) on AVPU scale) with signs of herniation

3. Circulation:
 a. Wound care:
 i. Control bleeding with direct pressure if no suspected open skull injury
 ii. Moist sterile dressing to any potential open skull wound
 b. **Moderate / severe closed head injury**:
 i. Blood pressure: avoid hypotension
 1. Adult (age > 10 years): maintain SBP ≥ 110 mmHg
 2. Pediatric: maintain SBP:
 a. < 1 month: > 60 mmHg
 b. 1-12 months: > 70 mmHg
 c. 1-10 years: > 70 + 2x age in years
 c. Closed head injury: Consider administering NS/LR fluid bolus to maintain blood pressure to above numbers and maintain cerebral perfusion
 d. Do not delay transport to initiate IV access

4. Disability:
 a. Evaluate for other causes of altered mental status:
 i. Evaluate blood glucose if indicated
 b. Spinal stabilization
 c. Perform and trend neurologic status assessment (moderate / severe: GCS ≤13, P (pain) or U (unresponsive) on AVPU scale)
 i. Early signs of deterioration:
 1. Confusion
 2. Agitation
 3. Drowsiness
 4. Vomiting
 5. Severe headache
 ii. Monitor for signs of herniation
 d. Severe head injury: Elevate head of bed 30 degrees
5. Transport destination specific to head trauma
 a. Preferential transport to highest level of care within trauma system:
 i. GCS ≤ 13, P (pain) or U (unresponsive) on AVPU scale
 ii. Penetrating head trauma
 iii. Open or depressed skull fracture

Patient Safety Considerations
1. Do not hyperventilate patient unless signs of herniation
2. Assume concomitant cervical spine injury in patients with moderate/severe head injury

Notes/Educational Pearls
Key Considerations
1. Important that providers be specifically trained in accurate neurologic status assessment
2. If endotracheal intubation or invasive airways are used, continuous waveform capnography is required to document proper tube placement and assure proper ventilation rate
3. Signs of herniation
 a. Decreasing mental status
 b. Abnormal respiratory pattern
 c. Asymmetric/unreactive pupils
 d. Decorticate posturing
 e. Cushing’s response (bradycardia and hypertension)
4. Be alert for deterioration in patients with risk factors for potentially significant head injury:
 a. GCS < 15 at 2 hours post-injury, anything below A (alert) on AVPU scale
 b. Age > 55 years
 c. Deterioration in neurologic status assessment
 d. Post-traumatic seizure
 e. Focal neurological deficit
 f. LOC > 5 min
 g. Clinical suspicion of skull fracture
 h. Recurrent vomiting
 i. Known coagulopathy/bleeding disorder/anticoagulant therapy
 j. Persistent severe headache
 k. Persistent post-traumatic amnesia
 l. Multisystem trauma
 m. Large scalp hematoma/abrasion
 n. Dangerous mechanism:
 i. Fall > 20 feet (adult)
 ii. Fall > 10 feet (pediatric)
 iii. High risk auto crash
 iv. Motor vehicle vs. pedestrian or bicyclist
 v. Age
5. Do not delay transport for IV access placement
6. A “continually compromised” airway is one where basic airway maneuvers and suction do not protect the patient from significant aspiration
7. Note that in circulation section, “adult” designation was used at age ≥ 10 because at 10, the formula for pediatric SBP target = SBP 90 which is the same target as adult. These numbers are taken from 2010 AHA Guidelines, Part 14 (PALS) - Kleinman citation in References
Pertinent Assessment Findings
1. Neurologic status assessment findings
2. Pupils
3. Trauma findings on physical exam

Quality Improvement
Key Documentation Elements
1. Mechanism of injury documented
2. At least one full set of vital signs documented: SBP/DBP, P, R, SaO₂, GCS
3. Pupil exam documented for moderate/severe head injury
4. EtCO₂ monitored and documented for moderate/severe head injury

Performance Measures
1. No oxygen desaturation < 90%
2. No hypotension < 90 mmHg
3. No EtCO₂ lower than 35 for mild head injury, 30 if severe head injury with signs of herniation
4. Appropriate triage to trauma center

References

Revision Date
September 15, 2014
Spinal Care

(Adapted from an evidence-based guideline created using the National Prehospital Evidence-Based Guideline Model Process)

(9914107 – Spinal Cord Injury)

Patient Care Goals
1. Select patients for whom spinal immobilization is indicated
2. Minimize secondary injury to spine in patients who have, or may have, an unstable spinal injury
3. Minimize patient morbidity from immobilization procedures

Patient Presentation

Inclusion criteria
- Traumatic mechanism of injury

Exclusion criteria
- No specific recommendations

Patient Management

Assessment
1. Assess the scene, to determine the risk of injury. Mechanism alone should not determine if a patient requires cervical spine immobilization. However, mechanisms that have been associated with higher risk of injury are the following:
 a. Motor vehicle collisions, including automobiles, all-terrain vehicles, and snowmobiles
 b. Axial loading injuries to the spine
 c. Associated, substantial torso injuries
 d. Falls >10 feet
2. Assess the patient in the position he/she was found. Initial assessment should focus on determining whether or not a cervical collar needs to be applied.
3. Assess for mental status, neurologic deficits, spinal pain or tenderness, any evidence of intoxication, or other severe injuries

Treatment and Interventions
1. Immobilize patient with cervical collar if there is any of the following:
 a. Patient complains of midline neck or spine pain
 b. Any midline neck or spinal tenderness with palpation
 c. Any abnormal mental status (including extreme agitation) or neurologic deficit
 d. Any evidence of alcohol or drug intoxication
 e. Another severe or painful distracting injury is present
 f. Torticollis in children
 g. A communication barrier that prevents accurate assessment

If none of the above apply, patients should not have a cervical collar placed
2. Patients with penetrating injury to the neck should not receive spinal immobilization, regardless of whether they are exhibiting neurologic symptoms or not. Doing so can lead to delayed identification of injury or airway compromise, and has been associated with increased mortality.

3. If extrication may be required
 a. From a vehicle: After placing a cervical collar, if indicated, children in a booster seat and adults should be allowed to self-extricate. For infants and toddlers already strapped in a car seat with a built-in harness, extricate the child while strapped in his/her car seat.
 b. Other situations requiring extrication: A padded long board may be used for extrication, using the lift and slide (rather than a logroll) technique.

4. Helmet removal
 a. If a football helmet needs to be removed, it is recommended to remove the face mask followed by manual removal (rather than the use of automated devices) of the helmet while keeping the neck immobilized. Occipital padding should be applied, as needed, with the patient in a supine position, in order to maintain neutral cervical spine positioning.
 b. Evidence is lacking to provide guidance about other types of helmet removal.

5. Patients should not routinely be transported on long boards, unless the clinical situation warrants long board use. An example of this may be facilitation of immobilization of multiple extremity injuries or an unstable patient where removal of a board will delay transport and/or other treatment priorities. In these rare situations, long boards should be padded or have a vacuum mattress applied to minimize secondary injury to the patient.

6. Patients should be transported to the nearest appropriate facility, in accordance with the Centers for Disease Control “Guidelines for Field Triage of Injured Patients” (see General Trauma Management guideline).

Patient Safety Considerations
1. Be aware of potential airway compromise or aspiration in immobilized patient with nausea/vomiting, or with facial/oral bleeding.
2. Excessively tight immobilization straps can limit chest excursion and cause hypoventilation.
3. Prolonged immobilization on spine board can lead to ischemic pressure injuries to skin.
4. Prolonged immobilization on spine board can be very uncomfortable for patient.
5. Children are abdominal breathers, so immobilization straps should go across chest and pelvis and not across the abdomen, when possible.
6. Children have disproportionately larger heads. When securing pediatric patients to a spine board, the board should have a recess for the head, or the body should be elevated approximately 1-2 cm to accommodate the larger head size and avoid neck flexion when immobilized.

Notes/Educational Pearls
Key Considerations
1. Evidence is lacking to support or refute the use of manual stabilization prior to spinal assessment in the setting of a possible traumatic injury, when the patient is alert with spontaneous head/neck movement. Providers should not manually stabilize these alert and spontaneously moving patients, since patients with pain will self-limit movement, and forcing immobilization on children with this clinical appearance may unnecessarily increase

All Rights Reserved V.11-14

169
discomfort and anxiety
2. Certain populations with musculoskeletal instability may be predisposed to cervical spine injury. However, evidence does not support or refute that these patients should be treated differently than those who do not have these conditions. These patients should be treated according to the spinal care guideline like other patients without these conditions.
3. Age alone should not be a factor in decision-making for prehospital spine care, yet the patient’s ability to reliably be assessed at the extremes of age should be considered. Communication barriers with infants/toddlers or elderly patients with dementia may prevent the provider from accurately assessing the patient.
4. Spinal immobilization should be considered a treatment or preventive therapy.
5. Patients who are likely to benefit from immobilization should undergo this treatment.
6. Patients who are not likely to benefit from immobilization, who have a low likelihood of spinal injury, should not be immobilized.
7. Ambulatory patients may be safely immobilized on gurney with cervical collar and straps and will not generally require a spine board.
8. Long spine board should be reserved for patient movement in non-ambulatory patients who meet immobilization criteria and should be removed as soon as is practical.

Pertinent Assessment Findings
1. Mental status
2. Normal neurologic examination
3. Evidence of intoxication
4. Evidence of multiple trauma with other severely painful injuries

Quality Improvement

Key Documentation Elements
1. Patient complaint of neck or spine pain
2. Spinal tenderness
3. Mental status/GCS
4. Neurologic examination
5. Evidence of intoxication
6. Documentation of multiple trauma
7. Documentation of mechanism of injury

Performance Measures
1. Percentage of patients with high risk mechanisms of injury and signs or symptoms of cervical spine injury who are placed in a cervical collar.
2. Percentage of patients without known trauma who have a cervical immobilization device placed (higher percentage creates a negative aspect of care).
3. Percentage of trauma patients who are transported on a long backboard (target is a low percentage).
4. Percentage of patients with a cervical spinal cord injury or unstable cervical fracture who did not receive cervical collar.

References
for children with cervical spine injury based on destination hospital from scene of injury.
Acad Emerg Med, 2014 21(1), 55-64

20. Dixon, M, O'Halloran J, Cummins NM. Biomechanical analysis of spinal immobilisation during

All Rights Reserved V.11-14
29. Hemmes B, Poeze M, Brink PR. Reduced tissue-interface pressure and increased comfort on a newly developed soft-layered long spineboard. J Trauma, 2010 68(3), 593-598
41. March JA, Ausband SC, Brown, LH. Changes in physical examination caused by use of spinal

57. Spinal Motion Restriction Guideline. 2013 State of Connecticut

Revision Date
September 15, 2014
Toxins and Environmental

Poisoning/Overdose Universal Care

(9914135 – Overdose/Poisoning/Toxic Ingestion)

Patient Care Goals
1. Remove patient from hazardous material environment/decontaminate to remove continued sources of absorption, ingestion, inhalation, or injection
2. Identify intoxicating agent by toxidrome or appropriate environmental testing
3. Assess risk for organ impairments (heart, brain, kidney)
4. Identify antidote or mitigating agent
5. Treat signs and symptoms in effort to stabilize patient

Patient Presentation

Inclusion Criteria
Presentation may vary depending on the concentration and duration of exposure. Signs and symptoms may include, but are not limited to, the following:

1. Absorption:
 a. Nausea
 b. Vomiting
 c. Diarrhea
 d. Altered mental status
 e. Abdominal pain
 f. Rapid heart rate
 g. Dyspnea
 h. Seizures
 i. Arrhythmias
 j. Respiratory depression
 k. Sweating
 l. Tearing
 m. Defecation
 n. Constricted/dilated pupils
 o. Rash
 p. Burns to the skin

2. Ingestion:
 a. Nausea
 b. Vomiting
 c. Diarrhea
 d. Altered mental status
 e. Abdominal pain
 f. Rapid or slow heart rate
 g. Dyspnea
 h. Seizures

All Rights Reserved V.11-14
i. Arrhythmias
j. Respiratory depression
k. Chemical burns around or inside the mouth
l. Abnormal breath odors

3. Inhalation:
a. Nausea
b. Vomiting
c. Diarrhea
d. Altered mental status
e. Abnormal skin color
f. Dyspnea
g. Seizures
h. Burns to the respiratory tract
i. Stridor
j. Sooty sputum
k. Known exposure to toxic or irritating gas
l. Respiratory depression
m. Sweating
n. Tearing
o. Constricted/dilated pupils
p. Dizziness

4. Injection:
a. Local pain
b. Puncture wounds
c. Reddening skin
d. Local edema
e. Numbness
f. Tingling
g. Nausea
h. Vomiting
i. Diarrhea
j. Altered mental status
k. Abdominal pain
l. Seizures
m. Muscle twitching
n. Hypoperfusion
o. Respiratory depression
p. Metallic or rubbery taste

Exclusion Criteria
No specific recommendations

Patient Management

Assessment
1. Make sure the scene is safe

All Rights Reserved V.11-14
2. Consider Body Substance Isolation (BSI) or appropriate personal protective equipment (PPE)
3. Assess ABCD and if indicated expose and then cover to assure retention of body heat
4. Vital signs which include temperature
5. Place cardiac monitor and examine rhythm strip for arrhythmia potentials (consider 12-lead EKG)
6. Check blood glucose Level
7. Monitor pulse oximetry and ETCO₂ for respiratory decompensation
8. Identify specific medication taken (including immediate release vs sustain release) time of ingestion, dose, and quantity
9. Pertinent cardiovascular history or other prescribed medications for underlying disease
10. Check for needle marks, paraphernalia, bites, bottles or evidence of agent involved, self-inflicted injury, or trauma
11. Law enforcement should have checked for weapons and drugs but you may decide to re-check
12. Patient pertinent history
13. Patient physical examination

Treatment and Interventions
1. Assure a patent airway
2. Administer oxygen and if hypoventilation, toxic inhalation or desaturation noted, support breathing
3. Initiate IV access for infusion of lactated ringers or normal saline and obtain blood samples if EMS management might change value (e.g. glucose, lactate, cyanide)
4. Fluid bolus (20 ml/kg) if evidence of hypoperfusion
5. Administration of appropriate antidote or mitigating medication (refer to specific agent guideline if not listed below)
 a. Acetaminophen overdose:
 i. Consider activated charcoal without sorbitol (1 gm/kg) PO
 ii. Based on suspected quantity and timing (Rumack-Matthew nomogram), consider acetylcysteine 140 mg/kg PO (pediatric and adult)
 iii. If risk of rapidly decreasing mental status, do not administer oral agents
 b. Aspirin overdose:
 i. Consider activated charcoal without sorbitol (1 gm/kg) PO
 ii. If risk of rapid decreasing mental status, do not administer oral agents
 iii. As aspirin is erratically absorbed, charcoal is highly recommended to be administered early
 c. Ingestion of caustic substances (acids and alkali)
 i. In the few minutes immediately after ingestion, consider administration of water or milk if available (maximum of 250 ml)
 ii. Symptomatic dystonia, extrapyramidal signs or symptoms, or mild allergic reactions Consider administration of diphenhydramine
 1. Adult: 25 mg IV or IM
 2. Pediatric: 1 mg/kg IVP/IO or IM (maximum single dose of 25 mg)
 d. Symptomatic monoamine oxidase inhibitor overdose (MAOI; examples: Isocarboxazid (Marplan), Phenelzine (Nardil), Selegiline (Emsam), Tranylcypromine (Parnate))
i. Consider administration of midazolam (benzodiazepine of choice) for temperature control
ii. Adult and Pediatric: 0.1 mg/kg in 2 mg increments slow IV push over one to two minutes per increment with maximum single dose 5 mg (Reduce by 50% for patients 69 years or older)
e. Oral ingestion poisoning:
 i. Consider administration of activated charcoal without sorbitol (1 gm/kg) PO particularly if it is within the first 2 hour after ingestion (including acetaminophen)
 ii. Patients who have ingested medications with extended release or delayed absorption should also be administered activated charcoal
 iii. If there is a risk of rapidly decreasing mental status or for petroleum-based ingestions, do not administer oral agents

Patient Safety Considerations
1. Scene/environmental safety patient and provider
2. Monitor patient airway, breathing, pulse oximetry, ET Co2 for adequate ventilation as they will change over time
3. Repeat vital signs
4. Monitor level of consciousness
5. Monitor EKG with special attention to rate, rhythm, QRS and QT duration
6. Maintain or normalize patient temperature
7. Accurate ingestion history (as patient may become unconscious before arrival at ED):
 a. Time of ingestion
 b. Route of exposure
 c. Quantity of medication or toxin taken (safely collect all possible medications or agents)
 d. Alcohol or other intoxicant taken
8. Poison center should be engaged as early as reasonably possible to add in appropriate therapy and to track patient outcomes to improve knowledge of toxic effects. The national 24-hour toll-free telephone number to poison control centers is (800) 222-1222, and it is a resource for free, confidential expert advice from anywhere in the United States

Notes/Educational Pearls
Key Considerations
1. Each toxin or overdose has unique characteristics which must be considered in individual protocol
2. Activated charcoal is still a useful adjunct in the serious agent, enterohpetic, or extended releaseagent poisoning as long as the patient does not have the potential for rapid alteration of mental status or airway/aspiration risk
3. Ipecac is no longer recommended for any poisoning or toxic ingestion. The manufacturer has stopped production of this medication

Pertinent Assessment Findings
1. Each toxin or overdose has unique characteristics which must be considered in individual guideline
2. Frequent reassessment is essential as patient deterioration can be rapid and catastrophic

All Rights Reserved V.11-14
Quality Improvement

Key Documentation Elements
1. Repeat evaluation and documentation of signs and symptoms as patient clinical conditions may deteriorate rapidly
2. Identification of possible etiology of poisoning
3. Initiating measures on scene to prevent exposure of bystanders when appropriate/indicated
4. Time of symptoms onset and time of initiation of exposure-specific treatments

Performance Measures
1. Early airway management in the rapidly deteriorating patient
2. Accurate exposure history
 a. Time of ingestion/exposure
 b. Route of exposure
 c. Quantity of medication or toxin taken (safely collect all possible medications or agents)
 d. Alcohol or other intoxicant taken
3. Appropriate protocol selection and management
4. Multiple frequent documented reassessments

References

Revision Date
September 15, 2014
Acetylcholinesterase Inhibitors (Carbamates, Nerve Agents, Organophosphates) Exposure

(9914047 – Nerve Agents)

Patient Care Goals
Rapid recognition of the signs and symptoms of confirmed or suspected acetylcholinesterase inhibitor (AChEI) agents such as carbamates, nerve agents, or organophosphates exposure followed by expeditious and repeated administration of atropine, the primary antidote.

Patient Presentation

Inclusion Criteria
DUMBELS is a mnemonic used to describe the signs and symptoms of AChEI agent poisoning. All patient age groups are included where the signs and symptoms exhibited are consistent with the toxidrome of DUMBELS.

- D Diarrhea
- U Urination
- M Miosis/Muscle weakness
- B Bronchospasm/Bronchorrhea
- E Emesis
- L Lacrimation
- S Salivation/Sweating

Exclusion Criteria
No specific recommendations

Patient Management
1. Don the appropriate personal protective equipment (PPE)
2. Remove the patient’s clothing and wash the skin with soap and water
 a. AChEI agents can be absorbed through the skin
 b. Contaminated clothing can provide a source of continued exposure to the toxin
3. Rapidly assess the patient’s respiratory status, mental status, and pupillary status
4. Administer oxygen
5. Establish intravenous access (if possible)
6. Apply a cardiac monitor (if available)
7. The heart rate may be normal, bradycardic, or tachycardic
8. Clinical improvement should be based upon the drying of secretions and easing of respiratory effort rather than heart rate or pupillary response
9. Continuous and ongoing patient reassessment is critical

Assessment
1. AChEI agents are highly toxic chemical agents and can rapidly be fatal
2. Antidotes (atropine and pralidoxime) are effective if administered before circulation fails
3. The patient may develop:
 a. Miosis (pinpoint pupils)
b. Bronchospasm
c. Vomiting
d. Excessive secretions in the form of:
 i. Tearing
 ii. Salivation
 iii. Rhinorrhea
 iv. Diarrhea
 v. Urination

4. Penetration of an AChEI agent into the central nervous system (CNS) will cause:
 a. Headache
 b. Confusion
 c. Generalized muscle weakness
 d. Seizures
 e. Lethargy or unresponsiveness

5. Estimated level of exposure based upon signs and symptoms
 a. Mild
 i. Miosis alone
 ii. Miosis and severe rhinorrhea
 b. Mild to moderate (in addition to symptoms of mild exposure)
 i. Localized swelling
 ii. Muscle fasciculations
 iii. Nausea and vomiting
 iv. Weakness
 v. Shortness of breath
 c. Severe (in addition to symptoms of mild to moderate exposure)
 i. Unconsciousness
 ii. Convulsions
 iii. Apnea or severe respiratory distress requiring assisted ventilation
 iv. Flaccid paralysis

6. Onset of symptoms can be immediate with an exposure to a large amount of the AChEI

7. Signs and symptoms with large AChEI agent exposures (regardless of route)
 a. Sudden loss of consciousness
 b. Seizures
 c. Copious secretions
 d. Apnea
 e. Death
 i. There is usually an asymptomatic interval of minutes after liquid exposure before these symptoms occur
 ii. Effects from vapor exposure occur almost immediately

8. Patients with low-dose chronic exposures may have a more delayed presentation of symptoms

9. Identify:
 a. Specific agent taken (if possible)
 b. Time of exposure
 c. Quantity
 d. Pertinent cardiovascular history or other prescribed medications for underlying disease
10. The patient can manifest any or all of the signs and symptoms of the toxidrome based on the route of exposure, agent involved, and concentration of the agent:
 a. Vapor exposures will have a direct effect on the eyes and pupils causing miosis
 b. Patients with isolated skin exposures will have normally reactive pupils
 c. Certain AChEI agents can place the patient at risk for both a vapor and skin exposure

Treatment and Interventions

Medications:

1. **Atropine**
 Atropine is the primary antidote for organophosphate, carbamate, or nerve agent exposures, and repeated doses should be administered liberally to patients who exhibit signs and symptoms of exposure or toxicity
 a. Atropine may be provided in multi-dose vials, pre-filled syringes, or auto-injectors
 b. Commercially available atropine auto-injectors include:
 i. Atro-Pen® 1 mg of atropine (dark red container)
 ii. Atro-Pen® 2 mg of atropine (green container)
 iii. Pediatric Atro-Pen® 0.25 mg of atropine (yellow container)
 iv. Pediatric Atro-Pen® 0.5 mg of atropine (blue container)

2. **Pralidoxime Chloride (2-PAM)**
 Pralidoxime chloride is a secondary treatment and should be given concurrently in an effort to reactivate the acetylcholinesterase
 a. Pralidoxime chloride may be provided in a single dose vial, pre-filled syringes, or auto-injectors
 b. Auto-injectors contain 600 mg of pralidoxime chloride
 c. In order to be beneficial to the victim, a dose of pralidoxime chloride should be administered shortly after the nerve agent or organophosphate poisoning as it has minimal clinical effect if administration is delayed

3. **Benzodiazepines**
 Benzodiazepines are administered as an anticonvulsant for those patients who exhibit seizure activity (see the Seizures guideline for doses and routes of administration)
 a. Lorazepam, diazepam, and midazolam are the most frequently used benzodiazepines in the prehospital setting
 b. In the scenario of an AChEI agent exposure, the administration of diazepam or midazolam is preferable due to their more rapid onset of action
 c. Benzodiazepines may be provided in multi-dose or single-dose vials, pre-filled syringes, or auto-injectors
 d. Cana® is a commercially available auto-injector of diazepam

4. **Mark I® Kits**
 a. A commercially available kit of nerve agent/organophosphate antidote auto-injectors
 b. A Mark I® kit consists of one auto-injector containing 2 milligrams of atropine and a second auto-injector containing 600 milligrams of pralidoxime chloride

5. **Duodote®**
 a. A commercially available auto-injector of nerve agent/organophosphate antidote
 b. Duodote® is one auto-injector that contains 2.1 milligrams of atropine and 600 milligrams of pralidoxime chloride
Medication Administration:
1. Atropine in extremely large, and potentially multiple, doses is the antidote for an AChEI agent poisoning
2. Atropine should be administered immediately followed by repeated doses until the patient’s secretions resolve
3. Pralidoxime chloride (2-PAM) is a secondary treatment and, when possible, should be administered concurrently with atropine
4. The stock of atropine and pralidoxime chloride available to EMS providers is usually not sufficient to fully treat the victim of an AChEI agent exposure; however, EMS providers should initiate the administration of atropine and, if available, pralidoxime chloride
5. Seizures should be treated with benzodiazepines
 There is some emerging evidence that, for midazolam, the intranasal route of administration may be preferable to the intramuscular route
6. The patient should be emergently transported to the closest appropriate medical facility as directed by direct medical oversight

Recommended Doses
The medication dosing tables that are provided below are based upon the severity of the clinical signs and symptoms exhibited by the patient. There are several imperative factors to note:

1. For organophosphate or severe AChEI agent exposure, the required dose of atropine necessary to dry secretions and improve the respiratory status is likely to exceed 20 mg. Atropine should be administered rapidly and repeatedly until the patient’s clinical symptoms diminish
2. Since the antidotes in the Mark I® kit are in two separate vials, the atropine auto-injector in the kit can be administered to the patient in the event that Atro-Pen® or generic atropine auto-injectors are not available and/or intravenous atropine is not an immediate option
3. Due to the fact that Duodote® auto-injectors contain pralidoxime chloride, they should not be used for additional dosing of atropine beyond the recommended administered dose of pralidoxime chloride
4. All of the medications below can be administered intravenously in the same doses cited for the intramuscular route. However, due to the rapidity of onset of signs, symptoms, and potential death from AChEI agents, intramuscular administration is highly recommended to eliminate the inherent delay associated with establishing intravenous access
5. Atropine and diazepam can be administered via the intraosseous route. However, due to the rapidity of onset of signs, symptoms, and potential death from AChEI agents, intramuscular administration remains the preferable due to the inherent delay associated with establishing intraosseous access and the limited use of this route of administration for other medications
Mild AChEi Agent Exposure

<table>
<thead>
<tr>
<th>Patient (Weight)</th>
<th>Atropine Dose IM or via Auto-injector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant: 0-2 years</td>
<td>0.05 mg/kg IM or via auto-injector (e.g. 0.25 and/or 0.5 mg auto-injector(s))</td>
</tr>
<tr>
<td>Child: 3-7 years (13-25 kg)</td>
<td>1 mg IM or via auto-injector (e.g. one 1 mg or two 0.5 mg auto-injectors)</td>
</tr>
<tr>
<td>Child: 8-14 years (26-50 kg)</td>
<td>2 mg IM or via auto-injector (e.g. one 2 mg or two 1 mg auto-injectors)</td>
</tr>
<tr>
<td>Adolescent/Adult</td>
<td>2 mg IM or via auto-injector</td>
</tr>
<tr>
<td>Pregnant women</td>
<td>2 mg IM or via auto-injector</td>
</tr>
<tr>
<td>Geriatric or frail</td>
<td>1 mg IM or via auto-injector</td>
</tr>
</tbody>
</table>

Mild to Moderate AChEi Agent Exposure

<table>
<thead>
<tr>
<th>Patient (Weight)</th>
<th>Atropine Dose IM or via Auto-injector</th>
<th>Pralidoxime Chloride Dose IM or via 600 mg Auto-injector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant: 0-2 years</td>
<td>0.05 mg/kg IM or via auto-injector (e.g. 0.25 mg and/or 0.5 mg auto-injector)</td>
<td>15 mg/kg IM</td>
</tr>
<tr>
<td>Child: 3-7 years (13-25 kg)</td>
<td>1 mg IM or via auto-injector (e.g. one 1 mg auto-injector or two 0.5 mg auto-injectors)</td>
<td>15 mg/kg IM or One auto-injector (600 mg)</td>
</tr>
<tr>
<td>Child: 8-14 years (26-50 kg)</td>
<td>2 mg IM or via auto-injector (e.g. one 2 mg auto-injector or two 1 mg auto-injectors)</td>
<td>15 mg/kg IM or One auto-injector (600 mg)</td>
</tr>
<tr>
<td>Adolescent/Adult</td>
<td>2-4 mg IM or via auto-injector</td>
<td>600 mg IM or One auto-injector (600 mg)</td>
</tr>
<tr>
<td>Pregnant Women</td>
<td>2-4 mg IM or via auto-injector</td>
<td>600 mg IM or One auto-injector (600 mg)</td>
</tr>
<tr>
<td>Geriatric or frail</td>
<td>2 mg IM or via auto-injector</td>
<td>10 mg/kg IM or One auto-injector (600 mg)</td>
</tr>
</tbody>
</table>
Severe AChEI Agent Exposure

<table>
<thead>
<tr>
<th>Patient (Weight)</th>
<th>Atropine Dose IM or via Auto-injector</th>
<th>Pralidoxime Chloride Dose IM or via 600 mg Auto-injector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant: 0-2 years</td>
<td>0.1 mg/kg IM or via auto-injector (e.g. 0.25 mg and/or 0.5 mg auto-injector)</td>
<td>45 mg/kg IM</td>
</tr>
<tr>
<td>Child: 3-7 years (13-25 kg)</td>
<td>0.1 mg/kg IM or 2 mg via auto-injector (e.g. one 2 mg auto-injectors or four 0.5 mg auto-injectors)</td>
<td>45 mg/kg IM or One auto-injector (600mg)</td>
</tr>
<tr>
<td>Child: 8-14 years (26-50 kg)</td>
<td>4 mg IM or via auto-injector (e.g. two 2 mg auto-injectors or four 1 mg auto-injectors)</td>
<td>45 mg/kg IM or Two auto-injectors (1200 mg)</td>
</tr>
<tr>
<td>Adolescent: > 14 years</td>
<td>6 mg IM or 6 mg via auto-injector (e.g. three 2 mg auto-injectors)</td>
<td>Three auto-injectors (1800 mg)</td>
</tr>
<tr>
<td>Adult</td>
<td>6 mg IM or 6 mg via auto-injector (e.g. three 2 mg auto-injectors)</td>
<td>Three auto-injectors (1800 mg)</td>
</tr>
<tr>
<td>Pregnant Women</td>
<td>6 mg IM or 6 mg via auto-injector (e.g. three 2 mg auto-injectors)</td>
<td>Three auto-injectors (1800 mg)</td>
</tr>
<tr>
<td>Geriatric or frail</td>
<td>2-4 mg IM or 2-4 mg via auto-injector (e.g. one to two 2 mg auto-injectors)</td>
<td>25 mg/kg IM or Two to three auto-injectors (1200 mg-1800 mg)</td>
</tr>
</tbody>
</table>
Guideline for the Treatment of Seizures Secondary to AChEI Agent Exposure

<table>
<thead>
<tr>
<th>Patient</th>
<th>Diazepam</th>
<th>Midazolam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant (0-2 years)</td>
<td>0.2-0.5 mg/kg IM, repeat every 2-5 minutes</td>
<td>0.15 mg/kg IM, repeat prn in 10 minutes</td>
</tr>
<tr>
<td></td>
<td>0.2-0.5 mg/kg IV every 15-30 minutes; may repeat twice as needed</td>
<td>May repeat dose once</td>
</tr>
<tr>
<td></td>
<td>Total maximum dose: 5 mg</td>
<td>Total maximum dose: 0.3 mg/kg</td>
</tr>
<tr>
<td>Child (3-13 years)</td>
<td>0.2-0.5 mg/kg IM repeat every 2-5 minutes</td>
<td>0.15 mg/kg IM, not to exceed 10 mg, repeat prn in 10 minutes</td>
</tr>
<tr>
<td></td>
<td>0.2-0.5 mg/kg IV every 15-30 minutes; may repeat dose twice if needed</td>
<td>May repeat dose once</td>
</tr>
<tr>
<td></td>
<td>Total maximum dose: 5 mg if < 5 years</td>
<td>Total maximum dose: 0.3 mg/kg, not to exceed 20 mg</td>
</tr>
<tr>
<td></td>
<td>Total maximum dose: 10 mg if age ≥5 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 CANA auto-injector</td>
<td></td>
</tr>
<tr>
<td>Adolescent (≥14 years)</td>
<td>2-3 CANA auto-injectors</td>
<td>0.15 mg/kg IM to a maximum dose of 10 mg, repeat prn in 10 minutes</td>
</tr>
<tr>
<td></td>
<td>5-10 mg IV every 15 minutes</td>
<td>May repeat dose once</td>
</tr>
<tr>
<td></td>
<td>Total maximum dose: 30 mg</td>
<td>Total maximum dose: 20 mg</td>
</tr>
<tr>
<td>Adult</td>
<td>2-3 CANA auto-injectors</td>
<td>10 mg IM, repeat prn in 10 minutes</td>
</tr>
<tr>
<td></td>
<td>5-10 mg IV every 15 minutes</td>
<td>May repeat dose once</td>
</tr>
<tr>
<td></td>
<td>Total maximum dose: 30 mg</td>
<td>Total maximum dose: 20 mg</td>
</tr>
<tr>
<td>Pregnant Women</td>
<td>2-3 CANA auto-injectors</td>
<td>10 mg IM, repeat prn in 10 minutes</td>
</tr>
<tr>
<td></td>
<td>5-10 mg IV every 15 minutes</td>
<td>May repeat dose once</td>
</tr>
<tr>
<td></td>
<td>Total maximum dose: 30 mg</td>
<td>Total maximum dose: 20 mg</td>
</tr>
<tr>
<td>Geriatric</td>
<td>2-3 CANA auto-injectors</td>
<td>10 mg IM, repeat prn in 10 minutes</td>
</tr>
<tr>
<td></td>
<td>5-10 mg IV every 15 minutes</td>
<td>May repeat dose once</td>
</tr>
<tr>
<td></td>
<td>Total maximum dose: 30 mg</td>
<td>Total maximum dose: 20 mg</td>
</tr>
</tbody>
</table>

Patient Safety Considerations

1. Continuous and ongoing patient reassessment is critical
2. Clinical response to treatment is demonstrated by the drying of secretion and the easing of respiratory effort
3. Initiation of and ongoing treatment should **not** be based upon heart rate or pupillary response
4. Precautions for pralidoxime chloride administration:
 - Although Duodote® contains atropine, the primary antidote for an AChEI agent poisoning, the inclusion of pralidoxime chloride in the auto-injector can present challenges if additional doses of atropine are warranted by the patient condition and other formulations of atropine are unavailable:
 a. In the pediatric population, an overdose of pralidoxime chloride may cause profound neuromuscular weakness and subsequent respiratory depression
 b. In the adult population, especially for the geriatric victim, excessive doses of pralidoxime chloride may cause severe systolic and diastolic hypertension, neuromuscular weakness, headache, tachycardia, and visual impairment
 c. For the geriatric victim who may have underlying medical conditions, particularly impaired kidney function or hypertension, the EMS provider should consider administering the lower recommended adult dose of intravenous pralidoxime chloride
5. Considerations during the use of auto-injectors:
 a. If an auto-injector is administered, a dose calculation prior to administration is not necessary
 b. For atropine, additional auto-injectors should be administered until secretions diminish
 c. Mark I™ kits and Duodote™ have not been approved for pediatric use by the Food and Drug Administration (FDA), but they can be considered for the initial treatment for children of any age with severe symptoms of an AChEI agent poisoning especially if other formulations of atropine are unavailable
 d. Pediatric Atro-Pen® auto-injectors are commercially available in a 0.25 mg auto-injector (yellow) and a 0.5 mg auto-injector (red). Atro-Pen® auto-injectors are commercially available in a 1 mg auto-injector (blue) and a 2 mg auto-injector (green)
 e. A pralidoxime chloride 600 mg auto-injector may be administered to an infant that weighs greater than 12 kg

Notes/Educational Pearls

Key Considerations

1. Clinical Effects of AChEI Agents
 a. The clinical effects are caused by the inhibition of the enzyme acetylcholinesterase which allows excess acetylcholine to accumulate in the nervous system
 b. The excess accumulated acetylcholine causes hyperactivity in muscles, glands, and nerves
2. Organophosphates
 a. Can be legally purchased by the general public
 b. Toxic chemicals that are readily available for purchase by the general public as pesticides penetrate tissues and bind to the patient’s body fat producing a prolonged period of illness and ongoing toxicity even during aggressive treatment
3. Nerve agents
 a. Traditionally classified as weapons of mass destruction (WMD)

All Rights Reserved V.11-14
Not readily accessible to the general public

Extremely toxic and rapidly fatal with any route of exposure

GA (tabun), GB (sarin), GD (soman), GF, and VX are types of nerve agents and are WMDs

Pertinent Assessment Findings
The signs and symptoms exhibited with the toxidrome of DUMBELS. (See Patient Presentation Inclusion Criteria listed above)

Quality Improvement

Key Documentation Elements

1. Time to recognize initial signs and symptoms
2. Number of repeated doses of atropine required for the secretions diminish and respirations to improve
3. Patient reassessments
4. Patient responses to therapeutic interventions
5. Measures taken to decontaminate the patient
6. Measures taken to protect clean environments from contamination

Performance Measures

1. Ability of the EMS system to rapidly locate additional and adequate antidote assets
2. Ability of the EMS system to rapidly deploy additional and adequate antidote assets
3. Survival rates of victims
4. Complication rates from the toxin
5. Complication rates from the antidotes
6. Long-term clinical sequelae of the victims

References

Revision Date

September 15, 2014
Radiation Exposure

(9914049 – Radiologic Agent)

Patient Care Goals

1. Identify the patient with a confirmed or suspected radiation exposure or radioactive contamination
2. Minimize the resultant mortality and morbidity
3. Prevent ongoing or additional contamination

Patient Presentation

Inclusion criteria

1. Patients exposed to a known or suspected source of radiation
2. All ages are included particularly patients exhibiting the signs and symptoms of acute radiation toxicity:
 a. Nausea
 b. Vomiting
 c. Petechiae
 d. External bleeding
 e. Suspected internal bleeding
 f. Dizziness
 g. Headache
 h. Altered mental status

Exclusion criteria

No specific recommendations

Patient Management

1. Don personal protective equipment (PPE)
2. Exercise universal precautions at all times
3. Place contaminated towels, waste water, and body fluids in secured containers denoted for radioactive waste materials
4. Place all body fluids released from vomiting, urination, salivation, and defecation in plastic bags and secure them in containers denoted for radioactive waste materials

Assessment

Radiation does not produce any immediate symptoms unless the exposure is severe
Most patients with radiation will be asymptomatic initially

Treatment and Interventions

1. Confirmed or suspected skin exposures
 a. Wash all exposed areas repeatedly with soap and water
 b. Continue irrigation of the skin dosimetry readings decrease to an acceptable level
2. Confirmed or suspected inhalation contamination
 a. Administer oxygen
 b. Maintain the airway and, if necessary, perform intubation
 c. Support respirations and consider administration of albuterol aerosols if necessary
3. Confirmed or suspected radioactive ingestions
 a. Gastric emptying will not provide significant benefit
 b. Do not administer ipecac
4. Inform personnel at the receiving facility of a confirmed or suspected radioactive inhalation and/or ingestion as bronchopulmonary lavage and/or urgent administration of chelating or blocking agents may be indicated to minimize tissue damage
5. Potassium iodide (KI) may protect the thyroid in the rare event where radioactive iodine is released. If deemed necessary, the public health agency with jurisdictional authority will direct the distribution and administration of potassium iodide to the appropriate patient and emergency responder populations

Patient Safety Considerations
1. Monitor patient dosimetry readings frequently
2. Monitor EMS provider dosimetry readings frequently
3. For persons with high levels of radiation or an increasing trend in dosimetry readings:
 a. Remove from the scene
 b. Perform decontamination
 c. Move to a cold zone

Notes/Educational Pearls

Key Considerations
1. Sources of radiation
 a. Legal
 i. Industrial plants
 ii. Healthcare facilities that provide radiologic services
 iii. Nuclear power plants
 iv. Mobile engineering sources (e.g. construction sites that are installing cement)
 b. Illegal
 i. Weapons of mass destruction
 ii. “Dirty bomb” design to contaminate widespread areas
2. Physiology of Radiation Poisoning
 a. Contamination – Poisoning from direct exposure to a radioactive source, contaminated debris, liquids, or clothing where radiation continues to be emitted from particles on surface
 b. Exposure – Poisoning from radioactivity, in the form of ionizing rays, penetrating through the bodily tissues of the patient
3. Common types of radioactivity that cause poisoning
 a. Gamma rays
 i. Highest frequency of ionizing rays
 ii. Penetrates the skin deeply
 iii. Causes the most severe radiation toxicity
 b. Beta rays
 Can penetrate up to 1 cm of the skin’s thickness
 c. Alpha rays
 i. Lowest frequency of ionizing rays
ii. Short range of absorption

iii. Dangerous only if ingested or inhaled

d. Radioactive daughters
 i. Products of decay of the original radioactive substance
 ii. Can produce gamma and beta rays (e.g. uranium decays into a series of radon daughters)

4. In general, trauma patients who have been exposed to or contaminated by radiation should be triaged and treated on the basis of the severity of their conventional injuries.

5. A patient who is contaminated with radioactive material (e.g. flecks of radioactive material embedded in their clothing and skin) generally poses a minimal exposure risk to medical personnel.

Pertinent Assessment Findings

1. Earliest symptoms
 a. Tissues with rapid cell growth produce initial signs and symptoms
 b. Gastrointestinal tract elicited as nausea and vomiting

2. Delayed symptoms (days to weeks after exposure or contamination)
 a. Skin burns with direct contact with radioactive source
 b. Skin burns or erythema from ionizing rays
 c. Fever
 d. Bone marrow suppression presenting as:
 i. Immunosuppression
 ii. Petechiae
 iii. Spontaneous internal and external bleeding

Quality Improvement

Key Documentation Elements

1. Proper decontamination methods
2. Proper management of contaminated objects and substances
3. Appropriate treatment of patient’s signs and symptoms
4. Serial dosimetry readings

Performance Measures

1. Ability to acquire and distribute adequate numbers of dosimeters
2. Ability to acquire adequate assets and containers for decontamination
3. Mortality and morbidity rates of patients with early symptoms of radiation toxicity
4. Mortality and morbidity rates of patient with late symptoms of radiation toxicity
5. Established response plans to interface and coordinate with public health
6. Incidence of long-term sequelae in survivors
7. Incidence of long-term sequelae in EMS providers

References

All Rights Reserved V.11-14
Revision Date
September 15, 2014
Topical Chemical Burn

(No NEMSIS category)

Patient Care Goals
1. Rapid recognition of a topical chemical burn
2. Initiation of emergent and appropriate intervention and patient transport

Patient Presentation

Inclusion Criteria
Patients of all ages who have sustained exposure to a chemical that can cause a topical burn in a delayed clinical presentation

Exclusion criteria
None

Patient Management
1. Don the appropriate protective personal equipment (PPE)
2. Remove the patient’s clothing, if necessary
3. Contaminated clothing should preferably be placed in bags
4. If deemed necessary and manpower resources permit, the patient should be transported by EMS providers who did not participate in the decontamination process, and in an emergency response vehicle that has not been exposed to the chemical
5. Information regarding the chemical should be gathered while on scene
6. Communicate all data regarding the chemical to the receiving facility

Assessment
1. Clinical effects and severity of a topical chemical burn is dependent upon:
 a. Type of burn
 b. Concentration of the chemical
 c. pH of the chemical
 d. Onset of burn
 i. Immediate
 ii. Delayed (e.g. hydrofluoric acid)
2. Calculate the estimated total body surface area that is involved
3. Prevent further contamination

Treatment and Interventions
1. Carefully brush off solid chemical prior to flushing the site as the irrigating solution may activate a chemical reaction
2. Flush the patient’s skin (and eyes, if involved) with copious amounts of water or normal saline
3. Provide adequate analgesia via the pain management protocol provided by EMS direct medical oversight
4. Consider the use of topical anesthetic eye drops (e.g. tetracaine) for chemical burns of the eye
5. Consider the use of a Morgan lens to facilitate continuous flushing of chemical burns of the eye
6. Take measures to minimize hypothermia
7. Initiate intravenous fluid resuscitation if necessary to obtain hemodynamic stability

Hydrofluoric acid

Hydrofluoric acid (HF) is a highly corrosive substance that is primarily used for automotive cleaning products, rust removal, porcelain cleaners, etching glass, cleaning cement or brick, or as a pickling agent to remove impurities from various forms of steel. Patients who are initially exposed to low concentration of HF are pain-free. However, as HF penetrates and binds to the proteins in the skin, significant tissue damage and necrosis results hours after the initial exposure.

For all patients in whom a hydrofluoric acid exposure is confirmed or suspected:
1. Vigorously irrigate all affected areas with water or normal saline
2. Apply a cardiac monitor for significant HF exposures as hypocalcemia may occur
3. Apply calcium preparation:
 a. Calcium prevents tissue damage from hydrofluoric acid
 b. Calcium gluconate is preferred over calcium chloride as it is less irritating
 c. Topical calcium preparations:
 i. Commercially manufactured calcium gluconate gel
 ii. If commercially manufactured calcium gluconate gel is not available, a topical calcium gluconate gel preparation can be made by combining 25 ml of calcium gluconate 10% solution in 75-150 ml of a sterile water soluble gel (e.g. Surgilube® or KY® jelly)
 iii. If calcium gluconate is not available, 10 ml of calcium chloride 10% solution in 75-150 ml in sterile water soluble gel (e.g. Surgilube® or KY® jelly)
 iv. Apply generous amounts of calcium gluconate gel to the exposed skin sites to neutralize the cutaneous effects of the hydrofluoric acid and to prevent tissue damage and necrosis
 v. If fingers are involved, apply the calcium gel to the hand, squirt additional calcium gel into a surgical glove, and then insert the affected hand into the glove.
 vi. For patients who have sustained a significant exposure to hydrofluoric acid and are exhibiting clinically significant signs and symptoms of hypocalcemia, calcium chloride 10% solution should be administered intravenously

Patient safety considerations
1. Don PPE
2. Take measures to prevent the patient from further contamination through decontamination
3. Take measures to protect the EMS provider and others from contamination
4. Do not attempt to neutralize an acid with an alkali or an alkali with an acid as a serious exothermic reaction will occur and cause serious harm to the patient
5. Expeditious transport or transfer to a designated burn center should be considered for burns that involve a significant percentage of total body surface area or burns that involve the eyes, face, hands, feet or genitals
Key Considerations
1. IV fluid resuscitation should be guided by patient age, percentage of body surface area involved in burn, body habitus and calculated by the Parkland Formula (see Appendix V)
2. Since the severity of topical chemical burns is largely dependent upon the type, concentration, and pH of the chemical involved as well as the body site and surface area involved, it is imperative to obtain as much information as possible while on scene about the chemical substance by which the patient was exposed. The information gathering process will often include:
 a. Transport of the container of the chemical to the receiving facility
 b. Transport of the original or a copy of the Material Safety Data Sheet (MSDS) of the substance to the receiving facility
 c. Contacting the reference agency to identify the chemical agent and assist in management (e.g. CHEMTREC®)
3. Decontamination from chemicals with a low pH (acids) is more easily accomplished than chemicals with a high pH (alkalis) because alkalis tend to penetrate and bind to deeper tissues
4. Some chemicals will also manifest local and systemic signs, symptoms, and bodily damage

Pertinent Assessment Findings
1. An estimate of the total body surface area that is involved
2. Patient response to therapeutic interventions
3. Patient response to fluid resuscitation
4. Patient response to analgesia

Quality Improvement

Key Documentation Elements
1. Burn site
2. Body surface area involved
3. Identification of the chemical
4. Reported or measured pH of the chemical
5. Acquisition and transfer of MSDS, chemical container, or other pertinent substance information to the receiving the facility

Performance Measures
1. Overtriage/undertriage of patients to designated burn centers
2. Early recognition of a topical burn with appropriate treatment
3. Early recognition of hydrofluoric acid burns followed by expeditious initiation of treatment with calcium gluconate and/or calcium chloride
4. Measures taken to prevent further contamination

References
6. Tintinalli JE et al. Tintinalli’s Emergency Medicine, 2011 1297, 1351, 1381-1382
Stimulant Poisoning/Overdose

(No NEMSIS category)

Patient Care Goals
1. Identify intoxicating agent
2. Protect organs at risk for injury such as heart, brain, liver, kidney
3. Determine if there is an antidote
4. Treat the symptoms which may include anxiety, hallucinations, chest pain, seizure, arrhythmia, excited delirium

Patient Presentation
Inclusion Criteria
1. Cocaine
2. Amphetamines
3. Phencyclidine (PCP)
4. Derivatives
 a. Ecstasy
 b. Methamphetamine
 c. Bath salts

Exclusion Criteria
No specific recommendations

Patient Management
Begin with the ABCDs:
1. Airway is patent
2. Breathing is oxygenating
3. Circulation is perfusing
4. Mental status is coherent
5. Treat any compromise of these parameters
6. Ask about chest pain and difficulty breathing

Assessment
1. Vital signs including temperature
2. Apply a cardiac monitor and examine rhythm strip for arrhythmias
3. Check blood glucose level
4. Monitor ETCO₂ for respiratory decompensation
5. Check for trauma, self-inflicted injury
6. Law enforcement should have checked for weapons and drugs, but you may decide to repeat the inspection

Treatment and Interventions
1. Need IV access for any fluids and meds
2. Give fluids for poor perfusion; cool fluids for hyperthermia (see Shock and Hyperthermia/Heat Exposure guidelines)
3. Treat chest pain as ACS and follow STEMI protocol if there is EKG is consistent with STEMI
4. Consider treating shortness of breath as atypical ACS; apply oxygen per Universal Care guideline to maintain oxygen saturation > 94%
5. Consider soft restraints especially if law enforcement has been involved in getting patient to cooperate (see Agitated or Violent Patient/Behavioral Emergency guideline)
6. Consider medications to reduce stimulation and anxiety, and to improve behavior and compliance. (See Agitated or Violent Patient/Behavioral Emergency guideline). If haloperidol or droperidol is used, monitor 12-lead for QT-interval if feasible
7. Consider prophylactic use of anti-emetic: ondansetron. Do not use promethazine if haloperidol or droperidol are to be or have been given
8. As a last resort consider diphenhydramine to induce drowsiness
9. If hyperthermia suspected, begin external cooling

Patient Safety Considerations
1. Apply soft restraints if necessary
2. Explain to the patient that his/her safety and the safety of all of the ambulance occupants is a priority during transport
3. Administer medications for chemical restraint when violence or threatening behavior is present or imminent

Notes/Educational Pearls

Key Considerations
1. If law enforcement has placed the patient in handcuffs, this patient needs ongoing physical restraint for safe transport. Have law enforcement in back of ambulance for the handcuffed patient or make sure proper physical restraints are in place before law enforcement leaves and ambulance departs from scene
2. If patient has signs and symptoms of ACS, strive to give nitroglycerin SL q 3-5 minutes as long as SBP > 100 and until pain resolves (if range not desired, use q 3 minutes). Vasospasm is often the problem in this case as opposed to a fixed coronary artery lesion
3. Maintaining IV access, cardiac monitor, and SPO2/ETCO2 monitors are key to being able to catch and intervene decompensations in a timely manner. Restrain the patient to facilitate patient assessment and lessen likelihood of vascular access or monitor displacements

Pertinent Assessment Findings
1. History is as important as the physical examination
2. If the patient is on psychiatric medication, but has failed to be compliant, this fact alone puts the patient at higher risk for excited delirium
3. If the patient is found naked, this may elevate the suspicion for stimulant use or abuse and increase the risk for excited delirium
4. If polypharmacy is suspected, hypertension and tachycardia are expected hemodynamic findings secondary to increased dopamine release. Stimulus reduction from benzodiazepines, anti-psychotics, and ketamine will improve patient’s vital signs and behavior
5. Be prepared for the potential of cardiovascular collapse as well as respiratory arrest
6. If a vasopressor is needed, epinephrine or norepinephrine is recommended over dopamine
Quality Improvement

Key Documentation Elements
1. Reason for restraints and neurologic/circulatory exams with restraint use
2. Reason for medications selected
3. Documentation of QT interval when haloperidol or droperidol is used and result conveyed to ED staff

Performance Measures
1. Recognition of need for monitoring cardiovascular and respiratory status of patient with stimulant toxicity
2. ACS evaluation and treatment considered for chest pain and shortness of breath
3. Respiratory compromise quickly recognized and treated
4. Cardiovascular compromise quickly recognized and treated
5. Patient and medics did not suffer any harm
6. Access and monitoring were not lost during transport

References

Revision Date
September 15, 2014
Cyanide Exposure

(9914043 – Cyanide)

Patient Care Goals
1. Remove patient from toxic environment
2. Assure adequate ventilation, oxygenation and correction of hypoperfusion

Patient Presentation
Cyanide is a colorless, “bitter almond smell” (genetically only 40% of population can smell) gas or white crystal which attaches to tissues at the cellular mitochondria (cytochrome oxidase) level, thus preventing the use of oxygen, leading to cellular hypoxia

Inclusion Criteria
Depending on its form, cyanide can enter the body through inhalation, ingestion, or absorption through the skin. Cyanide should be suspected in occupational or smoke exposures (i.e. firefighting), industrial accidents, natural catastrophes, suicide and murder attempts, chemical warfare and terrorism (whenever there are multiple casualties of an unclear etiology). Non-specific and early signs of cyanide exposure (inhalation, ingestion, or absorption) include the following signs and symptoms: anxiety, vertigo, weakness, headache, tachypnea, nausea, dyspnea, vomiting, and tachycardia

High concentrations of cyanide will produce:
1. Markedly altered level of consciousness
2. Seizure
3. Respiratory depression or respiratory arrest
4. Cardiac dysrhythmia (other than sinus tachycardia)

The rapidity of onset is related to the severity of exposure (inhalation or ingestion) and may have dramatic, immediate effects causing early hypertension with subsequent hypotension, sudden cardiovascular collapse or seizure/coma

Exclusion Criteria
No specific recommendations

Patient Management

Assessment
1. Remove patient from toxic environment
2. Assess ABCDs and, if indicated, expose and then cover the patient to assure retention of body heat
3. Vital signs which include temperature
4. Put on cardiac monitor and examine rhythm strip for arrhythmia potentials (consider 12-lead EKG)
5. Check blood glucose Level
6. Monitor pulse oximetry and ETCO₂ for respiratory decompensation.
7. Identify specific agent taken, time of ingestion/ inhalation, and quantity
8. Pertinent cardiovascular history or other prescribed medications for underlying disease
9. Patient pertinent history

10. Patient physical exam

Treatment and Interventions

There is no widely available, rapid, confirmatory cyanide blood test. Treatment decisions must be made on the basis of clinical history and signs and symptoms of cyanide intoxication. For the patient with an appropriate history and manifesting one or more of high concentrations of cyanide signs or symptoms, treat with:

1. 100% oxygen via non-rebreather mask or bag valve mask

2. Hydroxocobalamin
 a. Collect a pre-treatment blood sample in the appropriate tube for lactate and cyanide levels
 b. Adult: Administer hydroxocobalamin. Initial dose is 5 gm administered over 15 minutes slow IV. Each 5 gm vial of hydroxocobalamin for injection is to be reconstituted with 200 ml of LR (25 mg/ml) and administered at 10 - 15 ml/minute. An additional 5 gm dose may be administered with medical consultation
 c. Pediatric: Administer hydroxocobalamin 70 mg/kg (reconstitute concentration is 25 mg/ml). Each 5 gm vial of hydroxocobalamin for injection is to be reconstituted with 200 ml of LR (25 mg/ml) and administered at 10 - 15 ml/minute. Maximum single dose is 5 gm

3. Amyl nitrite inhaled ampule (do not use in conjunction with carbon monoxide poisoning)
 a. Adult only: one ampule (0.3mL) inhaled

4. Sodium nitrite (do not use in conjunction with carbon monoxide poisoning)
 a. Adult: 300 mg (10 ml of 3%) IV over two to four minutes
 b. Pediatric: 6 mg/kg (0.2 ml/kg of 3%) [This dosing strategy has been established as safe in children with a hemoglobin concentration of ≥7 g/dl]

5. Sodium thiosulfate
 a. Adult: 12.5 gm IV (50 ml of 25% solution)
 b. Pediatric: 0.5 gm/kg IV (2 ml/kg of 25% solution)

6. If seizure, consider midazolam (benzodiazepine of choice)
 a. Adult: 0.1 mg/kg in 2 mg increments slow IV push over one to two minutes per increment with maximum single dose 5 mg (Reduce by 50% for patients 69 years or older)
 b. Pediatric: 0.1 mg/kg in 2 mg increments slow IV push over one to two minutes per increment with maximum single dose 5 mg or 0.2 mg/kg IN to max dose of 4 mg

Patient Safety Considerations

1. In the event of multiple casualties, be sure to wear appropriate PPE during rescue evacuation from the toxic environment

2. If patient has ingested cyanide liquid or crystals, the cyanide will react with the stomach acids to generate hydrogen cyanide gas which may be released into provider breathing air with belching, vomiting or gastric lavage

3. Do not use nitrites in conjunction with suspected carbon monoxide poisoning as it worsens the hemoglobin oxygen carrying capacity even more than CO

4. Hydroxocobalamin is only agent safe for treatment of cyanide poison in pregnant patient
Notes/Educational Pearls

Key Considerations
1. Pulse oximetry accurately reflects serum levels of oxygen but does not accurately reflect tissue oxygen levels therefore should not be relied upon
2. After hydroxocobalamin has been administered, pulse oximetry levels are no longer accurate
3. If the patient has taken an oral ingestion of cyanide salt, the cyanide salt will react to the acids in the stomach generating hydrogen cyanide. Be sure to maximize air circulation in closed space (back compartment of ambulance) as the patient’s gastric contents may contain hydrogen cyanide gases when released with vomiting or belching

Pertinent Assessment Findings
Early and repeated assessment is essential

Quality Improvement

Key documentation elements
1. Repeat evaluation and documentation of signs and symptoms as patient clinical conditions may deteriorate rapidly
2. Identification of possible etiology of poisoning
3. Time of symptoms onset and time of initiation of exposure-specific treatments
4. Therapy and response to therapy

Performance measures
1. Early airway management in the rapidly deteriorating patient
2. Accurate exposure history
 a. Time of ingestion/exposure
 b. Route of exposure
 c. Quantity of medication or toxin taken (safely collect all possible medications or agents)
 d. Alcohol or other intoxicant taken
3. Appropriate protocol selection and management
4. Multiple frequent documented reassessments

References

Revision Date
September 15, 2014
Beta Blocker Poisoning/Overdose

(No NEMSIS category)

Patient Care Goals
1. Reduce GI absorption of oral agents with some form of binding
2. Assure adequate ventilation, oxygenation and correction of hypoperfusion

Patient Presentation
Beta blocker or beta adrenergic antagonist medication to reduce the effects of epinephrine/adrenaline

Inclusion Criteria
Patients present with:
1. Bradycardia
2. Hypotension
3. Lethargy
4. Weakness
5. Shortness of breath
6. Possible seizures

Exclusion Criteria
No specific recommendations

Patient Management

Assessment
1. Assess ABCDs and if indicated expose and then cover to assure retention of body heat
2. Vital signs which include temperature
3. Apply a cardiac monitor, examine rhythm strip for arrhythmias, and consider obtaining a 12-lead EKG
4. Check blood glucose level
5. Monitor pulse oximetry and ETCO₂ for respiratory decompensation
6. Identify specific medication taken (noting immediate release vs. sustained release formulations), time of ingestion, and quantity
7. Pertinent cardiovascular history or other prescribed medications for underlying disease
8. Patient pertinent history
9. Patient physical

Treatment and Interventions
1. Consider activated charcoal without sorbitol (1 gm/kg) PO. If risk of rapid decreasing mental status, do not administer oral agent without adequately protecting the airway
2. Perform blood glucose determination on all patients but especially on pediatric patients as beta blockers can cause hypoglycemia in pediatric population
3. Consider atropine sulfate for symptomatic bradycardia
 a. Adult: 1 mg IV q 5 minutes to max of 3 mg
b. Pediatric: 0.02 mg/kg (0.5 mg max) q 5 minutes, max total dose 1 mg
4. Consider fluid challenge (20 ml/kg) for hypotension with associated bradycardia
5. Consider glucagon for symptomatic patient
 a. Adult: 1 mg every 5 minutes IVP (may require 6 mg to see clinical effects)
 b. Pediatric:
 i. 1 mg IVP (25-40 kg); every 5 minutes as necessary
 ii. 0.5 mg IVP (less than 25 kg); every 5 minutes as necessary
6. Consider vasopressors after adequate fluid resuscitation for the hypotensive patient
 a. Norepinephrine (start 2 mcg/minute and titrate)
 b. Dopamine (start 2 mcg/kg/minute and titrate)
7. Consider transcutaneous pacing if refractory to initial pharmacologic interventions
8. If seizure, consider midazolam (benzodiazepine of choice)
 a. Adult: 0.1 mg/kg in 2 mg increments slow IV push over one to two minutes per increment with maximum single dose 5 mg (Reduce by 50% for patients 69 years or older)
 b. Pediatric: 0.1 mg/kg in 2 mg increments slow IV push over one to two minutes per increment with maximum single dose 5 mg or 0.2 mg/kg IN to max dose of 4 mg

Patient Safety Considerations
1. Ipecac is contraindicated
2. Transcutaneous pacing may not always capture nor correct hypotension when capture is successful

Notes/Educational Pearls

Key Considerations
1. Pediatric patient may develop hypoglycemia from beta blocker overdose therefore it is important to perform glucose evaluation
2. Glucagon has a side effect of increased vomiting
3. Atropine may have little or no effect (likely to be more helpful in mild overdoses)

Pertinent Assessment Findings
1. Certain beta blockers, such as acebutolol and propranolol may increase QRS duration
2. Certain beta blockers such as acebutolol and pindolol may produce tachycardia and hypertension
3. Sotalol can produce increase in QTc interval and ventricular dysrhythmia
4. Frequent reassessment is essential as patient deterioration can be rapid and catastrophic

Quality Improvement

Key documentation elements
1. Repeat evaluation and documentation of signs and symptoms and vital signs as patient clinical conditions may deteriorate rapidly
2. Identification of possible etiology of poisoning
3. Time of symptoms onset and time of initiation of exposure-specific treatment
4. Therapy and response to therapy
Performance Measures

1. Early airway management in the rapidly deteriorating patient
2. Accurate exposure history
 a. Time of ingestion/exposure
 b. Route of exposure
 c. Quantity of medication or toxin taken (safely collect all possible medications or agents)
 d. Alcohol or other intoxicant taken
3. Appropriate protocol selection and management
4. Multiple frequent documented re-assessments
5. Blood glucose checks (serial if long transport, especially in children)
6. Good evaluation of the EKG and the segment intervals

References

Revision Date

September 15, 2014
Bites and Envenomation

(9914079 – Bites and Envenomation – Land; 9914081 – Bites and Envenomation – Marine)

Patient Care Goals

Bites, stings, and envenomations can come from a variety of insects, marine and terrestrial animals. There is a spectrum of toxins or envenomations with very limited EMS interventions.

1. Assure adequate ventilation, oxygenation and correction of hypoperfusion
2. Pain control which also includes limited external interventions to reduce pain

Patient Presentation

Inclusion Criteria

Bites, stings, and envenomations can come from a variety of marine and terrestrial animals and insects causing local or systemic effects. Patients may present with toxin specific reactions which may include:

1. Site pain
2. Swelling
3. Erythema
4. Discoloration
5. Bleeding
6. Nausea
7. Abdominal pain
8. Hypotension
9. Tachycardia
10. Tachypnea
11. Muscle incoordination
12. Confusion
13. Anaphylaxis/allergic reactions

There is a spectrum of toxins or envenomations and limited EMS interventions that will have any mitigating effect on the patient in the field. The critical intervention is to get the patient to a hospital that has access to the antivenin if applicable.

Exclusion Criteria

None

Patient Management

Assessment

1. Assess ABCDs and if indicated expose and then cover to assure retention of body heat
2. Vital signs which include temperature
3. Apply a cardiac monitor, examine rhythm strip for arrhythmias, and consider obtaining a 12-lead EKG
4. Check blood glucose Level
5. Monitor pulse oximetry and ETCO₂ for respiratory decompensation
6. Patient pertinent history
7. Patient physical

Treatment and Interventions
1. Consider an IV fluid bolus (normal saline or Ringers Lactate) 20 ml/kg up to 2 liters
2. Consider vasopressors after adequate fluid resuscitation for the hypotensive patient
 a. Dopamine (start 2 mcg/kg/minute and titrate)
 b. Norepinephrine (start 2 mcg/minute and titrate)
3. If seizure, see **Seizures** guideline
4. Specific therapy for select bites, stings, or envenomation
 a. Envenomations that are known to have antivenin or antitoxin: e.g. black widow spider, certain scorpions, octopi, fanged snakes and lizards. For these envenomations, consider transport to hospital that has access to antivenin if feasible
 b. Jellyfish (Cnidarians): Scrape off any remaining tentacles or nematocysts, then immerse affected body part in hot water (113 °F/45 °C) or, for non-USA jellyfish, use vinegar (acetic acid) to reduce pain due to deactivation of the nematocysts
 c. Lionfish, scorpionfish, stingray: Immerse affected body part in hot water to reduce the pain associated with the toxin

Patient Safety Considerations
1. Do not perform any of the following:
 a. Tourniquets, tight Ace/crepe bandage, or constricting bands above or below the site of the envenomation
 b. Incision and/or suction
 c. Application of cold packs (cryotherapy)
2. EMS providers should not try to capture the offending marine or terrestrial animal or insect
3. If the offending organism has been killed, beware that many dead insect, marine or fanged animals can continue to bite or sting with venom and should be safely placed in a hard sided and closed container for future identification
4. Patient may still have an imbedded stinger, tooth, nematocysts or barb which may continue to deliver toxin if left imbedded. Consider safe removal without squeezing the toxin delivery apparatus

Notes/Educational Pearls

Key Considerations
Vinegar (acetic acid) has potential to increase pain associated jelly fish as it can increase nematocysts discharge. Use of vinegar should be avoided within the United States

Pertinent Assessment Findings
1. Assess for signs and symptoms of local and systematic impact of the suspected toxin
2. Patient may still have an imbedded stinger, tooth, nematocysts or barb which may continue to deliver toxin if left imbedded

Quality Improvement

Key Documentation Elements
1. It is helpful to accurately describe the suspect bite or sting source without risking patient or EMS provider
2. Only transport source animal or insect if can be done safely in a hard sided container
3. Repeat evaluation and documentation of signs and symptoms as patient clinical conditions may deteriorate rapidly
4. Time of symptoms onset and time of initiation of exposure-specific treatments
5. Therapy and response to therapy

Performance Measures
1. Offending organism was managed appropriately without secondary exposure
2. Appropriate and timely definitive treatment was provided

References
1. American College of Medical Toxicology; American Academy of Clinical Toxicology; American Association of Poison Control Centers; European Association of Poison Control Centres and Clinical Toxicologists; International Society on Toxicology; Asia Pacific Association of Medical Toxicology. Pressure immobilization after North American Crotalinae snake envenomation. Clin Toxicol, (Phila). 2011 Dec; 49(10): 881-2

Revision Date
September 15, 2014
Calcium Channel Blocker Poisoning/Overdose

(No NEMSIS category)

Patient Care Goals
1. Reduce GI absorption of oral agents with some form of binding agent (activated charcoal) especially for extended release
2. Early airway protection is required as patients may have rapid mental status deterioration
3. Assure adequate ventilation, oxygenation and correction of hypoperfusion

Patient Presentation
Calcium channel blocker medication interrupts the movement of calcium across cell membranes. Calcium channel blockers are used to manage hypertension, certain rate-related arrhythmias, prevent cerebral vasospasm, and angina pectoris

Inclusion Criteria
Patients present with:
1. Bradycardia
2. Hypotension
3. Decreased AV Nodal conduction
4. Cardiogenic shock

Exclusion criteria
No specific recommendations

Patient Management

Assessment
1. Assess ABCDs and, if indicated, expose and then cover to assure retention of body heat
2. Vital signs including temperature
3. Apply a cardiac monitor, examine rhythm strip for arrhythmias, and consider obtaining a 12-lead EKG
4. Check blood glucose Level
5. Monitor pulse oximetry and ETCO₂ for respiratory decompensation
6. Identify specific medication taken (noting immediate release vs. sustained release formulations), time of ingestion, and quantity
7. Pertinent cardiovascular history or other prescribed medications for underlying disease
8. Patient pertinent history
9. Patient physical

Treatment and Interventions
1. Consider activated charcoal without sorbitol (1 gm/kg) PO. If risk of rapid decreasing mental status, do not administer oral agent without adequately protecting the airway
2. Consider atropine sulfate for symptomatic bradycardia
 a. Adult: 1 mg IV q 5 minutes to max of 3 mg
 b. Pediatric: 0.02 mg/kg (0.5 mg max) q 5 minutes, max total dose 1 mg
3. Consider calcium chloride or calcium gluconate
a. **Calcium Chloride**
 i. Adult: 0.5 - 1 gm slow IVP (50 mg/minute)
 ii. Pediatric: 20 mg/kg (0.2 ml/kg) slow IVP/IO (50 mg/ml) Maximum dose 1 gm or 10 ml
b. **Calcium gluconate**
 i. Adult: 2-6 gm slow IVP over 10 minutes
 ii. Pediatric: 60 mg/kg IV over 10 minutes

4. **Consider glucagon for symptomatic bradycardia patient**
a. Adult: 1 mg every 5 minutes IVP (may require 5-15 mg to see effect)
b. Pediatric:
 i. 1 mg IVP (25-40 kg); every 5 minutes as necessary
 ii. 0.5 mg IVP (less than 25 kg); every 5 minutes as necessary

5. **Consider IV fluid bolus (normal saline or Ringers Lactate) 20 ml /kg up to 2 liters**

6. **Consider vasopressors after adequate fluid resuscitation for the hypotensive patient**
a. Norepinephrine (start 2 mcg/minute and titrate)
 1. Dopamine (start 2 mcg/kg/minute and titrate)

7. **Consider transcutaneous pacing if refractory to initial pharmacologic interventions**

8. **If seizure, consider midazolam (benzodiazepine of choice)**
a. Adult : 0.1 mg/kg in 2 mg increments slow IV push over one to two minutes per increment with maximum single dose 5 mg (Reduce by 50% for patients 69 years or older)
b. Pediatric: 0.1 mg/kg in 2 mg increments slow IV push over one to two minutes per increment with maximum single dose 5 mg or 0.2 mg/kg IN to max dose of 4 mg

Patient Safety Considerations
1. Ipecac is contraindicated
2. Transcutaneous pacing may not always capture nor correct hypotension when capture is successful

Notes/Educational Pearls

Key Considerations
1. Certain calcium channel blockers generate a variety of dysrhythmias. Especially concerning are:
 a. Bradycardia
 b. Torsade de pointes
2. The avoidance of administering calcium chloride or calcium gluconate to a patient on cardiac glycosides (e.g. digoxin) as this may precipitate toxicity and associate fatal arrhythmias is felt to be a historical belief and not supported
3. Glucagon has a side effect of increased vomiting

Pertinent Assessment Findings
1. Close monitoring of EKG changes and dysrhythmias
2. Serial frequent assessments are essential as these patient often have rapid deterioration with profound hypotension
Quality Improvement
Key Documentation Elements
1. Repeat evaluation and documentation of signs and symptoms as patient clinical conditions may deteriorate rapidly
2. Identification of possible etiology of poisoning
3. Time of symptoms onset and time of initiation of exposure-specific treatments
4. Therapy and response to therapy

Performance Measures
1. Early airway management in the rapidly deteriorating patient
2. Accurate exposure history
 a. Time ingestion/exposure
 b. Route of exposure
 c. Quantity of medication or toxin taken (safely collect all possible medications or agents)
 d. Alcohol or other intoxicant taken
3. Appropriate protocol selection and management
4. Multiple frequent documented reassessments

References

Revision Date
September 15, 2014
Carbon Monoxide/Smoke Inhalation

(9914039 – Carbon Monoxide/Smoke Inhalation)

Patient Care Goals
1. Remove patient from toxic environment
2. Assure adequate ventilation, oxygenation and correction of hypoperfusion

Patient Presentation
Carbon monoxide is a colorless, odorless gas which has a high affinity for binding to red cell hemoglobin thus preventing the binding of oxygen to the hemoglobin leading to hypoxia. A significant reduction in oxygen delivery to tissues and organs occurs with carbon monoxide poisoning. With any form of combustion [fire/smoke (e.g. propane or charcoal stoves or heaters), combustion engines (e.g. generators, lawn mowers, motor vehicles, home heating systems)], carbon monoxide will be generated

Inclusion Criteria
Patients exposed to carbon monoxide source may present with a spectrum of symptoms:
1. Mild intoxication:
 a. Nausea
 b. Fatigue
 c. Headache
 d. Vertigo
 e. Lightheadedness
2. Moderate to severe:
 a. Altered mental status
 b. Tachypnea
 c. Tachycardia
 d. Convulsion
 e. Cardiopulmonary arrest

Exclusion Criteria
No specific recommendations

Patient Management

Assessment
1. Remove patient from toxic environment
2. Assess ABCDs and, if indicated, expose and then cover to assure retention of body heat
3. Vital signs which include temperature
4. Apply a cardiac monitor, examine rhythm strip for arrhythmias, and consider obtaining a 12-lead EKG
5. Check blood glucose level
6. Monitor pulse oximetry and ETCO₂ for respiratory decompensation
7. Patient pertinent history
8. Patient physical
Treatment and Interventions
1. 100% oxygen via non-rebreather mask or bag valve mask
2. If seizure, see Seizures guideline
3. Consider transporting patients with severe carbon monoxide poisoning directly to a facility with hyperbaric oxygen capabilities if feasible

Patient Safety Considerations
1. Consider affixing a carbon monoxide detector to an equipment bag that is routinely taken into scene (if it signals alarm, don appropriate respiratory protection)
2. Remove patient and response personnel from potentially hazardous environment as soon as possible
3. Provide instruction to the patient, the patient’s family, and other appropriate bystanders to not enter the environment (e.g. building, car) where the carbon monoxide exposure occurred until the source of the poisoning has been eliminated
4. Do not look for cherry red skin coloration as an indication of carbon monoxide poisoning as this is usually a morgue finding
5. CO oximeter devices may yield inaccurate low/normal results for patients with CO poisoning. All patients with probable or suspected CO poisoning should be transported to the nearest appropriate hospital, based on their presenting signs and symptoms

Notes/Educational Pearls

Key Considerations
1. Pulse oximetry is inaccurate due to the carbon monoxide binding with hemoglobin
2. As maternal carboxyhemoglobin levels do not accurately reflect fetal carboxyhemoglobin levels, pregnant patients are more likely to be treated with hyperbaric oxygen
3. A patient light wavelength analysis device to detect carboxyhemoglobin is useful to indicate if there is a carbon monoxide exposure in a non-arrested patient. Do not anticipate an immediate change in readings with oxygen administration

Pertinent Assessment Findings
1. Early and repeat assessment of patient’s mental status and motor function are extremely useful in determining response to therapy and the need for hyperbaric therapy
2. Identification of possible etiology of poisoning
3. Time of symptoms onset and time of initiation of exposure-specific treatment
4. Therapy and response to therapy

Quality Improvement

Key Documentation Elements
1. If using an environmental carbon monoxide detector, record the level detected
2. Evidence of soot or burns around the face, nares or pharynx
3. Early and repeat assessment of patient’s mental status and motor function are extremely useful in determining response to therapy and the need for hyperbaric therapy
4. Accurate exposure history
a. Time of ingestion/exposure
b. Route of exposure
c. Quantity of medication or toxin taken (safely collect all possible medications or agents)
d. Alcohol or other intoxicant taken
5. Signs and symptoms of other patients encountered at same location, if present

Performance Measures
1. Early airway management in the rapidly deteriorating patient
2. Accurate exposure history
 a. Time of ingestion/exposure
 b. Route of exposure
 c. Quantity of medication or toxin taken (safely collect all possible medications or agents)
 d. Alcohol or other intoxicant taken
3. Appropriate protocol selection and management
4. Multiple frequent documented reassessments

References

Revision Date:
September 15, 2014
Opioid Poisoning/Overdose

(No NEMSIS category)

Patient Care Goals
1. Rapid recognition and intervention of a clinically significant opioid poisoning or overdose
2. Prevention of respiratory and/or cardiac arrest

Patient Presentation

Inclusion Criteria
Patents of all age groups with access to opioids and known or suspected opioid use or abuse

Exclusion Criteria:
Patients with altered mental status exclusively from other causes (e.g. head injury, hypoxia, or hypoglycemia)

Patient Management
1. Don the appropriate personal protective equipment (PPE)
2. Therapeutic interventions to support the patient’s airway, breathing, and circulation should be initiated prior to the administration of naloxone
3. Identify specific medication taken (including immediate release vs sustained release) if possible, time of ingestion, and quantity
4. Obtain and document pertinent cardiovascular history or other prescribed medications for underlying disease
5. Be aware that unsecured hypodermic needles may be on scene if the intravenous route may have been used by the patient, and that there is a higher risk of needle sticks during the management of this patient population which may also have an increased incidence of blood-borne pathogens
6. Naloxone, an opioid antagonist, should be considered for administration to patients with a confirmed or suspected opioid overdose, especially those that are exhibiting respiratory depression
7. Naloxone administration via the intranasal or intramuscular routes or as a nebulized solution provide additional options of medication delivery

Assessment
1. Assess the patient’s airway, breathing, circulation, and mental status
2. Support the patient’s airway by positioning, oxygen administration, and ventilator assistance with a bag valve mask if necessary
3. Assess the patient for other etiologies of altered mental status including hypoxia, hypoglycemia, hypotension, and traumatic head injury

Treatments and Interventions
1. Critical resuscitation (opening and/or maintaining the airway, provision of oxygen, ensuring adequate circulation) should be performed prior to naloxone administration

All Rights Reserved V.11-14
2. If the patient is symptomatic from a confirmed or suspected opioid overdose, consider naloxone administration. The administration of the initial dose or subsequent doses can be incrementally titrated until respiratory depression is reversed.

3. Naloxone can be administered via the IV, IM, IN, or ETT routes with the typical initial adult dose ranging between 0.4-2 mg:
 a. For the intranasal route, divide administration of the dose equally between the nostrils to a maximum of 1 ml per nostril.
 b. The intranasal administration can also be titrated until adequate respiratory effort is achieved.
 c. The pediatric dose of naloxone is 0.1 mg/kg IV, IM, IN, or ETT with a maximum dose of 2 mg.
 d. Naloxone auto-injectors contain 0.4 mg. The cartons of naloxone prescribed to laypersons contain two naloxone 0.4 mg auto-injectors and one trainer.

Patient Safety Considerations

1. Clinical duration of naloxone:
 a. The clinical opioid reversal effect of naloxone is limited and may end within an hour whereas opioids often have a duration of 4 hours or longer.
 b. Monitor the patient for recurrent respiratory depression and decreased mental status.

2. Opioid withdrawal:
 a. Patients with altered mental status secondary to an opioid overdose may become agitated or violent following naloxone administration due to opioid withdrawal.
 b. Be prepared for this potential scenario and take the appropriate measures in advance to ensure and maintain scene safety.

3. EMS providers should be prepared to initiate airway management before, during, and after naloxone administration and to provide appropriate airway support until the patient has adequate respiratory effort.

Notes /Educational Pearls:

Key Considerations

1. The essential feature of opioid overdose requiring EMS intervention is respiratory depression or apnea.

2. Overuse and abuse of prescribed and illegal opioids has led to an increase in accidental and intentional opioid overdoses.

3. DEA and opioids:
 a. Opioids, most of which are controlled under the Drug Enforcement Administration (DEA), have a high potential for abuse, but have an accepted medical use in patient treatment and can be prescribed by a physician.
 b. Frequent legally prescribed opioids include codeine, fentanyl, hydrocodone, morphine, hydromorphone, methadone, morphine, oxycodone, and oxymorphone.
 c. Opioid derivatives, such as heroin, are illegal in the United States.

4. Opioid combinations:
 a. Some opioids are manufactured as a combination of analgesics with acetaminophen, acetylsalicylic acid (aspirin), or other substances.
 b. In the scenario of an overdose, there is a potential for multiple drug toxicities.
 c. Examples of opioid combination analgesics:
i. Vicodin® is a combination of acetaminophen and hydrocodone
ii. Percocet® is a combination of acetaminophen and oxycodone
iii. Percodan® is a combination of aspirin and oxycodone
iv. Suboxone® is a combination of buprenorphine and naloxone

5. The IN route has the benefit of no risk of needle stick to the provider

Pertinent Assessment Findings
1. The primary clinical indication for the use of opioid medications is analgesia
2. In the opioid overdose scenario, signs and symptoms include:
 a. Miosis (pinpoint pupils)
 b. Decreased intestinal motility
 c. Respiratory depression
 d. Decreased mental status
3. Additional assessment precautions:
 a. The risk of respiratory arrest with subsequent cardiac arrest from an opioid overdose as well as hypoxia, hypercarbia, and aspiration may be increased when other substances such as alcohol, benzodiazepines, or other medications have also been taken by the patient
 b. The signs and symptoms of an opioid overdose may also be seen in newborns who have been delivered from a mother with recent or chronic opioid use. Neonates who have been administered naloxone for respiratory depression due to presumed intrauterine opioid exposure should be monitored closely for seizures

Quality Improvement

Key Documentation Elements
1. Rapid and accurate identification of signs and symptoms of opioid poisoning
2. Pulse oximetry (oxygen saturation) and, if available, capnography
3. Blood glucose
4. Naloxone dose and route of administration
5. Clinical response to medication administration

Performance Measures
1. Clinical improvement after prehospital administration of naloxone
2. Frequency of patients who develop adverse effects or complications (recurrent respiratory depression or decreased mental status, aspiration pneumonia or pulmonary edema)
3. Number of patients who refuse transport following naloxone administration

References
3. United States Department of Justice, Drug Enforcement Administration, United States Code Controlled Substance Act, Title 21, Section 812

Revision Date:
September 15, 2014

All Rights Reserved V.11-14
Hyperthermia/Heat Exposure

(9914027 – Heat Exposure/Heat Exhaustion; 9914029 – Heat Exposure/Heat Stroke)

Definitions:
1. **Heat cramps** are minor muscle cramps usually in the legs and abdominal wall. Temperature is normal.
2. **Heat exhaustion** has both salt and water depletion usually of a gradual onset. As it progresses tachycardia, hypotension, elevated temperature, and very painful cramps occur. Symptoms of headache, nausea and vomiting occur. Heat exhaustion can progress to heat stroke.
3. **Heat stroke** occurs when the cooling mechanism of the body (sweating) ceases due to temperature overload and/or electrolyte imbalances. Temperature is usually > 104 F. When no thermometer is available, it is distinguished from heat exhaustion by altered level of consciousness.

Patient Care Goals
1. Cooling and rehydration
2. Mitigate high risk for decompensation
3. Mitigate high risk for agitation and uncooperative behavior

Patient Presentation
Inclusion Criteria
1. Heat cramps
2. Heat exhaustion
3. Heat stroke
4. Stimulant drug abuse
5. Excited delirium (see also Agitated or Violent Patient/Behavioral Emergency guideline)

Exclusion Criteria
1. Fever from infectious or inflammatory conditions
2. Malignant hyperthermia
3. Neuroleptic malignant syndrome

Patient Management
Assessment
1. Patient assessment:
 a. Age
 b. Oral intake
 c. Medications
 d. Alcohol
 e. Illicit drugs
 f. Overdose
 g. Withdrawal risk
2. Environmental assessment:
 a. Ambient temperature and humidity
b. Exertion level
c. Length of time at risk
d. Attire (clothing worn)
e. Children left in cars with evidence of altered mental status and elevated body
temperature are likely suffering from hyperthermia

3. Associated symptoms:
 a. Cramps
 b. Headache
 c. Orthostatic symptoms
 d. Nausea
 e. Weakness

4. Vital signs:
 Temperature: usually 104 degrees Fahrenheit or greater (if thermometer available)

5. Mental status:
 a. Confusion
 b. Coma
 c. Seizures
 d. Psychosis

6. Skin:
 a. Flushed and hot
 b. Dry or sweaty
 c. Signs of first or second degree burns from sun exposure

7. Other signs of poor perfusion/shock

Treatment and Interventions
1. Move victim to a cool area and shield from the sun or any external heat source
2. Remove as much clothing as is practical and loosen any restrictive garments
3. If alert and oriented, give small sips of cool liquids
4. If altered mental status, check blood glucose level
5. Maintain airway vigilance for emesis, seizure
6. Place on cardiac monitor and record ongoing vital signs and level of consciousness
7. If temperature is > 104 degrees F (40 degrees C) or if altered mental status is present, begin
active cooling by:
 a. Continually misting the exposed skin with tepid water while fanning the victim (most
 effective)
 b. Truncal ice packs may be used, but are less effective than evaporation
 c. Shivering should be treated as soon as possible
 d. Ice bath immersion provides the most rapid cooling mechanism but may not be available
 to EMS
8. Establish IV access for heat stroke
9. Give cool fluids at 20 ml/kg boluses and reduce to 10 ml/kg/hr boluses when vitals are stable
10. Monitor for shivering and seizures; treat as below
11. Adult:
 Consider 500 ml normal saline IV fluid bolus for dehydration even if vital signs are normal
 If uncontrolled shivering occurs during cooling:
 a. Midazolam 2.5mg IV/IN, may repeat once in 5 minutes or; 5mg IM may repeat once in 10
 minutes

All Rights Reserved V.11-14
b. Lorazepam 1mg IV, may repeat once in 5 minutes or; 2mg IM, may repeat once in 10 minutes
c. Diazepam 2mg IV, may repeat once in 5 minutes

12. Pediatric:
 Consider 10 – 20ml/kg normal saline IV fluid bolus for dehydration even if vital signs are normal
 If uncontrolled shivering occurs during cooling:
 a. Midazolam 0.1mg/kg IV or 0.2mg/kg IN/IM (single maximum dose 1mg); Note: a 5mg/ml concentration is recommended for IN/IM administration
 b. Lorazepam 0.1mg/kg IV/IM (single maximum dose 1mg)
 c. Diazepam 0.2mg/kg IV or 0.5mg/kg PR (single maximum dose 2mg IV or 4mg PR)

13. Monitor for arrhythmia and cardiovascular collapse, (see Cardiovascular section)

Patient Safety Considerations
Use soft restraints, consider chemical restraints, and protect your IV access sites

Notes/Educational Pearls
Key Considerations
1. Patients at risk for heat emergencies include neonates, infants, geriatric patients, and patients with mental illness
2. Contributory risk factors may come from:
 a. Prescription and over-the-counter herbal supplements
 b. Cold medications
 c. Heart medications
 d. Diuretics
 e. Psychiatric medications
 f. Drug abuse
 g. Accidental or intentional drug overdose
3. Heat exposure can occur either due to increased environmental temperatures or prolonged exercise or a combination of both. Environments with temperature > 90° F and humidity > 60% present the most risk
4. Heat stroke is associated with cardiac arrhythmias independent of drug ingestion/overdose. Heat stroke has also been associated with cerebral edema
5. Do not forget to look for other causes of altered mental status such as low blood glucose level
6. Controversy: shivering is thought to worsen outcomes in treating heat stroke. It is controversial about whether to stop active cooling if shivering occurs and ALS care with IV access and anti-shivering drugs are not available. Risk of shivering versus risk of stopping active cooling must be weighed by the team. Research does not demonstrate the value of one benzodiazepine over another in shivering patients
7. Hyperthermia not from environmental factors has a differential that includes the following:
 a. Fever and delirium
 b. Hyperthyroid storm
 c. Delirium tremens (DTs)
 d. CNS lesion or tumor
 e. Adverse drug event: neuroleptic malignant syndrome, malignant hyperthermia
8. There is no evidence supporting EMS utilizing orthostatic vital signs
Pertinent Assessment Findings
1. Warning signs: fever, altered mental status
2. Blood glucose level for AMS

Quality Improvement

Key Documentation Elements
1. Patient assessment includes all types of medication/drug use
2. Environmental assessment done
3. Cooling treatments options considered and implemented
4. Decision-making regarding restraints
5. Decision-making regarding monitoring ABCs

Performance Measures
1. Blood glucose level done for altered mental status
2. Fluids given for hypotension
3. All decompensations during EMS care reviewed

References
3. EMRAP November 2013: Volume 13, Issue 11

Revision Date
September 15, 2014
Hypothermia/Cold Exposure

(9914023 – Cold Exposure; 9914031 – Hypothermia)

Patient Care Goals
1. Maintain hemodynamic stability
2. Prevent further heat loss
3. Aggressive management of cardiac arrest
4. Prevent loss of limbs

Patient Presentation
Patients may suffer from hypothermia from exposure to a cold environment (increased heat loss) or may suffer from a primary illness or injury that, in combination with cold exposure (heat loss in combination with decreased heat production), leads to hypothermia. Patients may suffer systemic effects from cold (hypothermia) or localized effects, such as in frostbite. Patients with mild hypothermia will have normal mental status, shivering and may have normal vital signs while patients with moderate to severe hypothermia will manifest mental status changes, eventual loss of shivering and progressive bradycardia, hypotension, and decreased respiratory status. Patients with frostbite will develop numbness involving the affected body part along with a “clumsy” feeling along with areas of blanched skin. Later findings include a “woody” sensation, decreased or loss of sensation, bruising or blister formation, or a white and waxy appearance to affected tissue

Inclusion Criteria
Patients suffering systemic or localized cold injuries

Exclusion Criteria
Patients without cold exposure, or patients with cold exposure but no symptoms referable to hypothermia or frostbite

Patient Management
Assessment
1. Patient assessment should begin with attention to the primary survey, looking for evidence of circulatory collapse and ensuring effective respirations. The patient suffering from moderate or severe hypothermia may have severe alterations in vital signs including weak and extremely slow pulses, profound hypotension and decreased respirations. The rescuer may need to evaluate the hypothermic patient for longer than the normothermic patient (up to 60 seconds)
2. History – Along with standard SAMPLE-type history, additional patient history should include attention to any associated injury or illness, duration of cold exposure, ambient temperature, and treatments initiated before EMS arrival
3. There are several means to categorize the severity of hypothermia based on either core body temperature readings or clinical evaluation. If possible and reliable, EMS providers should perform core body temperature measurements and categorize patients into one of the three follow levels of hypothermia:
 a. Mild – normal body temperature 35-32.1° C/95-89.8°F
b. Moderate - 32°-28° C – 89.7°-82.5°F
c. Severe - 28°-22° C (or lower) – 82.4°-68.1° F (or lower)

4. Equally important is the patient’s clinical presentation and the signs or symptoms the patient is experiencing. The above temperature based categorization should be balanced against these clinical findings
 a. Mild - vital signs not depressed normal mental status, shivering is preserved. Body maintains ability to control temperature
 b. Moderate/Severe – progressive bradycardia, hypotension and decreased respirations, alterations in mental status with eventual coma, shivering will be lost in moderate hypothermia (generally between 31-30° C), and general slowing of bodily functions. The body loses ability to thermo-regulate

Treatment and Interventions
1. Maintain patient and rescuer safety. The patient has fallen victim of cold injury and rescuers have likely had to enter the same environment. Maintain rescuer safety by preventing cold injury to rescuers
2. Manage airway as indicated
3. In Mild Hypothermia:
 a. Remove the patient from the environment and prevent further heat loss by removing wet clothes and drying skin, insulate from the ground, shelter the patient from wind and wet conditions and insulate the patient with dry clothing or a hypothermia wrap/blankets, cover the patient with a vapor barrier and, if available, move the patient to a warm environment
 b. Hypothermic patients have decreased oxygen needs and may not require supplemental oxygen. If oxygen is deemed necessary, it should be warmed, to a maximum temperature between 104-108° F (40-42° C) and humidified if possible
 c. Provide beverages or foods containing glucose if feasible and patient is awake and able to manage airway independently.
 d. Vigorous shivering can substantially increase heat production. Shivering should be fueled by caloric replacement
 e. Consider field-rewarming methods such as placement of large heat packs or heat blankets (chemical or electric if feasible) to the anterior chest or wrapped around the patient’s thorax if large enough. Forced air warming blankets (e.g. Bair Hugger®) can be an effective field rewarming method if available
 f. Monitor frequently. If temperature or level of consciousness decreases, refer to severe hypothermia, below
 g. Consider IV access. Indications for IV access and IV fluids in the mildly hypothermic patient are similar to those of the non-hypothermic patient. IV fluids, if administered, should be warmed, ideally to 42° C. Bolus therapy is preferable to continuous drip. The recommended fluid for volume replacement in the hypothermic patient is normal saline
 h. If alterations in mental status, consider measuring finger stick blood glucose and treat as indicated (follow Hypoglycemia/Hyperglycemia guideline) and assess for other causes of alterations of mentation
 i. Transport to a hospital capable of rewarming the patient

4. In Moderate or Severe Hypothermia:
 a. Perform ABCs. Pulse checks for patients suffering hypothermia should be performed for 60 seconds. Obtain core temperature if possible for patients exhibiting signs or
symptoms of moderate/severe hypothermia. Core temperatures are best measured by esophageal probe, if one is available and the provider has been trained in its insertion and use. If esophageal temperature monitoring is not available or appropriate, epitympanic or rectal temperatures should be used. Of note, rectal temperatures are not reliable or suitable for taking temperatures in the field and should only be done in a warm environment (such as a heated ambulance).
b. Manage airway as needed. Care must be taken not to hyperventilate the patient as hypocarbia may reduce the threshold for ventricular fibrillation in the cold patient. Indications and contraindications for advanced airway devices are similar in the hypothermic patient as in the normothermic patient.
c. Prevent further heat loss using the above methods.
d. Initiate field-rewarming methods such as placement of large heat packs or heat blankets (chemical or electric if feasible) to the anterior chest or wrapped around the patient’s thorax if large enough. Forced air warming blankets (e.g. Bair Hugger®) can be an effective field rewarming method if available.
e. Handle the patient gently. Attempt to keep the patient in the horizontal position, especially limiting motion of the extremities to avoid increasing return of cold blood to the heart. Once in a warm environment, clothing should be cut off (rather than removed by manipulating the extremities). Move the patient only when necessary such as to remove the patient from the elements.
f. Apply cardiac monitor or AED if available.
g. Establish IV and provide warmed NS bolus. Repeat as necessary.
h. If alterations in mental status, consider measuring finger stick blood glucose and treat as indicated (follow Hypoglycemia/Hyperglycemia guideline) and assess for other causes of alterations of mentation.
i. Transport as soon as possible to a hospital capable of aggressive resuscitation. If cardiac arrest develops consider transport to a center capable of extracorporeal circulation (if feasible).

5. Frostbite:
If the patient has evidence of frostbite, and ambulation/travel is necessary for evacuation or safety, avoid rewarming of extremities until definitive treatment is possible. Additive injury occurs when the area of frostbite is rewarmed then inadvertently refrozen. Only initiate rewarming if refreezing is absolutely preventable.
 a. If rewarming is feasible and refreezing can be prevented use circulating warm water (98.6 - 102° F/37 - 39° C) to rewarm effected body part, thawing injury completely. If warm water is not available, rewarm frostbitten parts by contact with non-affected body surfaces. Do not rub or cause physical trauma.
 b. After rewarming, cover injured parts with loose sterile dressing. If blisters are causing significant pain, and the provider is so trained, these may be aspirated, however, should not be de-roofed. Do not allow injury to refreeze. Follow the Pain Management guideline.

Patient Safety Considerations
1. Given the additive effects of additional cold stress, the patient should be removed from the cold environment as soon as operationally feasible.
2. In patients suffering from moderate to severe hypothermia, it is critical to not allow these patients to stand or exercise as this may cause circulatory collapse.

Notes/Educational Pearls

Key Considerations

Considerations in cardiac arrest
1. The mainstay of therapy in severe hypothermia and cardiac arrest should be effective chest compressions and attempts at rewarming.
2. The temperature at which defibrillation should first be attempted in the severely hypothermic cardiac arrest victim and the number of defibrillation attempts is unclear. There are different approaches regarding resuscitation of the hypothermic arrest patient. Per the American Heart Association, if the patient has a shockable rhythm (VF/VT), defibrillation should be attempted. It is reasonable to continue defibrillation attempts per AHA protocols concurrently with rewarming strategies. The state of Alaska’s 2014 guidance on management of hypothermic patients in cardiac arrest advises that defibrillation should be attempted once, followed by 2 minutes of chest compressions, then rhythm and pulse checks. If defibrillation is unsuccessful and the patient’s core temperature is < 30° C (86° F), do not make further attempts at defibrillation until the core temperature has increased to > 30° C (86° F). Continue CPR and attempt to rewarm the patient. If defibrillation is unsuccessful and the patient’s core temperature is > 30° C, (86° F), follow guidelines for normothermic patients. It is noted that the likelihood of successful defibrillation increases with every one-degree increase in temperature. If available monitors reveal asystole, CPR alone is the mainstay of therapy. If monitoring reveals an organized rhythm (other than VF or VT), but no pulses are detected, do not start CPR, but continue to monitor. While this may represent Pulseless Electrical Activity (PEA), this may also represent situations in which the patient’s pulses are not detectable, but remain effective due to decreased metabolic needs. In the case of PEA, the rhythm will deteriorate rapidly to asystole, in which case, CPR should be initiated. Given the potential to cause VF with chest compressions, the AK guidance offers that it is better to maintain effective cardiac activity than to start CPR and cause VF.
3. Manage the airway per standard care in cardiac arrest victims. (see cardiac arrest guideline)
4. There is little evidence to guide use of medications in severe hypothermia with cardiac arrest, however 2010 AHA updates to advanced cardiac life support recommend use of vasopressors according to standard ACLS protocols while the Alaska 2014 guidelines for the management of hypothermic patients advises medications should be withheld until the patient’s core temperature is > 30° C (86° F). Above 30° C, intervals between medication provision should be doubled until the patient reaches 35° C, at which time, normal medication intervals may be adopted.
5. Upon ROSC, follow the Adult Post-ROSC guideline.
6. Patients with severe hypothermia and arrest may benefit from resuscitation even after prolonged downtime, and survival with intact neurologic function has been observed even after prolonged resuscitation. Patients should not be considered deceased until aggressive rewarming has been attempted.
7. If a hypothermic patient clearly suffered cardiac arrest and subsequently became hypothermic afterward with prolonged down time between arrest and rescue, there is no rationale for initiating resuscitation and warming the patient.
8. The following are contraindications for initiation of resuscitation in the hypothermic patient:
a. Submersion for greater than one hour
b. Core temperature less than 50° F
c. Obvious fatal injuries (such as decapitation)
d. The patient exhibits signs of being frozen (such as ice formation in the airway)
e. Chest wall rigidity such that compressions are impossible
f. Danger to rescuers or rescuer exhaustion

Pertinent Assessment Findings
1. Identification of associated traumatic injuries (when present)
2. Identification of localized freezing injuries
3. Patient core temperature (when available)

Quality Improvement

Key Documentation Elements
1. Duration of cold exposure
2. Ambient temperature and recent range of temperatures
3. Rewarming attempts or other therapies performed prior to EMS arrival

Performance Measures
1. Patient core temperature and means of measurement (when available)
2. Presence of cardiac dysrhythmias
3. Documentation of associated trauma (when present)

References

Revision Date
September 15, 2014
Drowning

(9914093 – Drowning/Near Drowning)

Patient Care Goals
1. Rapid assessment and management of life-threatening injuries
2. Rescue from the water-based environment
3. Transport all patients suffering from drowning for hospital evaluation

Patient Presentation
Inclusion Criteria
Patients suffering from drowning or drowning events independent of presence or absence of symptoms.

Exclusion Criteria
Patients without history of drowning.

Patient Management
Assessment
1. Follow general patient care guideline
2. History should include circumstances leading to the submersion, details of mechanism of injury, time under water, and water temperature (if available)
3. Primary survey should include aggressive airway management and restoration of adequate oxygenation and ventilation. Unlike the CAB strategy used in standard cardiac arrest, patients suffering cardiac arrest from drowning require an ABC approach with prompt airway management and supplemental breathing
4. History, mechanism of injury and exam should include consideration of possible c-spine injury. If evaluation suggests injury to the cervical spine, manage c-spine
5. Assess for other associated injury such as injury to the head or dive-related emergency

Treatment and Interventions
1. Ensure scene safety for patient and rescuers. Remove patient from water as soon as possible. Practice the safest water rescue technique possible, given circumstances on scene. Evacuate to land or a water craft as soon as possible. If there is a delay to accessing shore or a rescue boat, initiate in-water basic life support consisting of ventilation only
2. Manage airway as indicated
3. Follow cardiac arrest guideline as indicated with consideration of ABC strategy for drowning victims in cardiac arrest. Initiate 5 rescue breaths followed by 30 chest compressions. After the initial 5 breaths, use a 2 breaths to 30 compression ratio
4. If mechanism or history suggest cervical spine injury, manage c-spine
5. Monitor vital signs including oxygen saturations
6. If O₂ saturations are less than 92%, provide supplemental oxygen to maintain saturation ≥ 94%. Consider positive pressure ventilation in patients with signs or symptoms of respiratory difficulty
7. Consider hypothermia and treat per Hypothermia/Cold Exposure guideline

All Rights Reserved V.11-14
8. If the victim was involved in underwater diving with diving equipment and uncertainty exists regarding the most appropriate therapy, consider contacting direct medical oversight and discussing need for hyperbaric treatment. Include discussion regarding:
 a. Submersion time
 b. Greatest depth achieved
 c. Ascent rate
9. Establish IV access
10. Fluid bolus as indicated
11. Advanced airway management as indicated. Consider CPAP in awake patients with respiratory distress
12. Cardiac monitor

Patient Safety Considerations
1. Avoidance of hyperoxygenation of the drowning victim
2. Rescuer safety considerations

Notes/Educational Pearls

Key Considerations
1. The World Health Organization definition of drowning is “the process of experiencing respiratory impairment from submersion/immersion in liquid”
2. Drowning is further defined in the following categories:
 a. Non-fatal drowning – patients rescued from drowning
 b. Fatal drowning – any death, acutely or subacutely, resultant from drowning
3. Submersion refers to situations in which the patient’s airway is underwater. Immersion refers to situations in which the patient’s body is in water but the patient’s airway remains out of the water
4. Drowning is a common cause of death in children. Risk factors for drowning include male gender, age less than 14 years old, alcohol use, lack of supervision, and risky behavior
5. Rescue efforts should be coordinated between all responding agencies to ensure patient is rapidly accessed and removed from the water
6. Initiation of in-water ventilations may increase survival. In-water chest compressions are futile
7. The European Resuscitation Council recommends 5 initial breaths be provided to the drowning victim. The initial ventilations may be more difficult to achieve as water in the airways may impede alveolar expansion. After the initial 5 breaths and 30 compressions, the standard ratio of 2 breaths to 30 compressions may be resumed
8. Active efforts to expel water from the airway (by abdominal thrusts or other means) should be avoided as they delay resuscitative efforts and increase the potential for vomiting and aspiration
9. Longstanding teaching has suggested that rescuers should always assume c-spine injury in victims of drowning. The 2010 American Heart Association update on special circumstances in cardiac arrest notes that routine c-spine precautions in all victims of drowning is likely unnecessary unless the mechanism or injury, history or physical exam suggests a cervical spine injury. Mechanisms of injury highly suggestive of cervical spine injury include diving, water skiing, surfing or watercraft accidents
10. Uncertainty exists regarding survival in cold water drowning, however, recent literature suggests the following:
a. If water temperature is less than 43° F (6° C) and the patient is submerged with evidence of cardiac arrest:
 i. Survival is possible for submersion time less than 90 minutes and resuscitative efforts should be initiated
 ii. Survival is not likely for submersion time greater than 90 minutes and providers may consider not initiating resuscitation or termination of resuscitation on scene

b. If water temperature is greater than 43° F (6° C) and the patient is submerged with evidence of cardiac arrest:
 i. Survival is possible for submersion time less than 30 minutes and resuscitative efforts should be initiated
 ii. Survival is not likely for submersion time greater than 30 minutes and providers may consider not initiating resuscitation or termination of resuscitation on scene

11. Patients may develop subacute respiratory difficulty after drowning and therefore all victims of drowning should be transported for observation

Quality Improvement

Key Documentation Elements
1. Mechanism of injury or history suggesting cervical spine injury
2. Submersion time
3. Water temperature
4. Activities leading to drowning
5. Consider a standardized data collection metrics such as the Utstein drowning data reporting elements

Performance Measures
Compliance with this guideline

References

Revision Date
September 15, 2014
SCUBA Injury/Accidents

(No NEMESIS category)

Patient Care Goals
1. Rapid assessment and management of life-threatening injuries
2. Rescue from the water-based environment
3. Transport patients suffering from SCUBA diving injury/illness for hospital evaluation and consideration of repressurization/hyperbaric oxygen therapy (HBOT)

Patient Presentation

Inclusion Criteria
Patients with recent history of SCUBA diving exhibiting potential signs and/or symptoms of dive related illness/injury, regardless of dive table compliance

Exclusion Criteria
Patients without history of recent SCUBA diving exposure

Patient Management

Assessment
1. Follow Universal Care guideline
2. History should include circumstances leading to the complaint, details of mechanism of injury, time under water, and water temperature (if available)
3. Be alert for signs of pulmonary injury (e.g. unequal or abnormal lung sounds, subcutaneous emphysema)
4. Assess for other associated injury such as injury to the head or spine, if mechanism and symptoms suggest

Treatment and Interventions
1. If SCUBA accident includes associated drowning/near-drowning, see Drowning guideline
2. Manage airway as indicated
3. If air embolism suspected, place in left lateral recumbent position
4. Monitor vital signs including oxygen saturations
5. If O₂ saturations are less than 92%, provide supplemental oxygen to maintain saturations ≥ 94%. Use positive pressure ventilation (e.g. CPAP) carefully in patients for whom pulmonary barotrauma is a consideration
6. Patients with symptoms suspicious for decompression illness (DCI), should be placed on supplemental oxygen regardless of saturations to enhance washout of inert gasses
7. Consider hypothermia and treat per Hypothermia/Cold Exposure guideline
8. Consider contacting direct medical oversight and discussing need for hyperbaric treatment and primary transport to facility with HBOT capability. Include discussion regarding factors such as submersion time, greatest depth achieved, ascent rate
9. Establish IV access
10. Fluid bolus as indicated
11. Advanced airway management as indicated
12. Cardiac monitor

All Rights Reserved V.11-14
Patient Safety Considerations
1. If patient still in the water, seek safest and most rapid means of removal (within your scope of training)
2. Seek assistance early for special rescue/extrication needs
3. Check for multiple patients (e.g. group dive table calculation error(s) or contaminated dive gases)

Notes/Educational Pearls

Key Considerations
1. Rescue efforts should be coordinated between all responding agencies to ensure patient is rapidly accessed and removed from the water if diver unable to do so himself/herself
2. If air medical transport necessary, patient should be transported in cabin pressurized to lowest possible altitude. If transported in unpressurized aircraft (e.g. most helicopter (HEMS) services), patient should be flown at the lowest safe altitude possible
3. Decompression illness may have a variety of presentations depending on system affected (e.g. skin, joint(s), pulmonary, neurologic)
4. SCUBA accidents/incidents can result in a variety of issues, including barotrauma, air embolism and decompression illness (DCI)

Pertinent Assessment Findings
1. Vital signs findings
2. Neurologic status assessment findings
3. Respiratory assessment findings (e.g. oxygen saturation, respiratory rate)
4. Subcutaneous emphysema

Quality Improvement

Key Documentation Elements
1. Water temperature, if available
2. Dive history
 a. Number of dives in recent history (days)
 b. “Bottom time” in dives
 c. Dive profiles
 d. Maximum depth
 e. Rate of ascent
 f. Safety stops utilized, if any
 g. Dive gas (e.g. air vs. mixed gases such as Nitrox, Heliox or Trimix)
3. Timing of onset of symptoms
4. History of altitude exposure after diving

Performance Measures
1. Recognition and appropriate care of pulmonary/respiratory complaints
2. Patient transported to nearest appropriate facility (HBOT if available)
3. Need for HBOT recognized and communicated to receiving facility
References

11. Vann, RD, Gerth, PJ, Denoble, CF. Pieper and Thalmann, eds. Experimental trials to assess the risks of decompression sickness in flying after diving. *Divers Alert Network, Department of Anesthesiology, Duke University Medical Center, Durham, NC; Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University Medical Center, Durham, NC; U.S. Navy Experimental Diving Unit, Panama City, FL; Center for Aging, Division of Biostatistics, Department of Community and Family Medicine, Duke University Medical Center, Durham, NC*

Revision Date
September 15, 2014
Altitude Illness

(9914021 – Altitude Sickness)

Patient Care Goals
1. Improve oxygenation through a combination of descent and supplemental O₂
2. Safe but rapid transport from the high altitude environment to a lower altitude environment

Patient Presentation

Inclusion Criteria
Patients suffering from altitude illness, including
1. Acute mountain sickness
2. High altitude pulmonary edema
3. High altitude cerebral edema

Exclusion Criteria
Patients who have not been exposed to altitude

Patient Management

Assessment
1. The definition of altitude illnesses are as follows:
 a. **Acute mountain sickness** – Headache plus one or more of the following: anorexia, nausea or vomiting, fatigue or weakness, dizziness or lightheadedness or difficulty sleeping. These symptoms must occur in the setting of recent arrival to high altitude (generally considered greater than 5000 – 7000 feet)
 b. **High altitude pulmonary edema** (HAPE) – Progressive dyspnea, cough, hypoxia, and weakness in high altitude environments (considered 8000 feet or greater). Patients may or may not exhibit symptoms if acute mountain sickness precedes symptoms of HAPE
 c. **High altitude cerebral edema** (HACE) – Heralded by mental status changes in patients with symptoms of acute mountain sickness including altered mentation, ataxia, or stupor and progressing to coma. Typically seen in high altitude environments (greater than 8000 feet)
2. Assessment should target the signs and symptoms of altitude illness but should also consider alternate causes of these symptoms

Treatment and Interventions
1. Ensure scene safety for rescuers
2. Stop ascent. Patients with acute mountain sickness only may remain at their current altitude and initiate symptomatic therapy. Patients with HACE or HAPE should initiate descent
3. Perform ABCs and manage airway as necessary
4. Administer supplemental oxygen with goal to keep oxygen saturations ≥ 94%
5. Descend to lower altitude. Descent is the mainstay of therapy and is the definitive therapy for all altitude related illnesses. Descent should be initiated as soon as scene conditions permit
 a. If severe respiratory distress is present and pulmonary edema is found on exam, provider should start positive pressure ventilation
 b. Establish IV and perform fluid bolus with goal to maintain systolic BP > 90 mm Hg
c. Monitor cardiac rhythm

Patient Safety Considerations
1. The high altitude environment is inherently dangerous. Rescuers must balance patient needs with patient safety and safety for the responders
2. Rapid descent by a minimum of 500-1000 feet is a priority, however rapidity of descent must be balanced by current environmental conditions and other safety considerations

Notes/Educational Pearls

Key Considerations
1. Patients suffering from altitude illness have exposed themselves to a dangerous environment. By entering the same environment, providers are exposing themselves to the same altitude exposure. Be vigilant in looking for symptoms of altitude illness amongst rescuers
2. Descent of 500-1000 feet is often enough to see improvements in patient conditions
3. Patients with HAPE are suffering from non-cardiogenic pulmonary edema and may benefit from positive pressure ventilation via either bag assisted ventilation, CPAP or other means of positive pressure ventilation
4. Patients suffering from altitude illness are commonly dehydrated and require IV fluids. Once resuscitation is complete and the patient requires no further fluid boluses, maintain IV fluids at 125 ml/hr
5. HAPE is the most lethal of all altitude illnesses
6. Consider alternate causes of symptoms of AMS. The symptoms of AMS may be caused by alternate etiologies such as carbon monoxide poisoning (in patients cooking within enclosed areas), dehydration, exhaustion, hypoglycemia, hyponatremia
7. Descent should always be the primary treatment strategy for patients suffering from altitude illness, especially patients suffering from HACE and HAPE. If descent is not possible, or if direct medical oversight permits, the EMS provider may consider the following possible therapies:
 a. Portable hyperbaric chambers are effective for the management of severe altitude illness. However, they should not be used in lieu of decent, only as an alternative should descent be unfeasible
 b. Acute mountain sickness
 i. Ibuprofen or acetaminophen for pain
 ii. Ondansetron 4 mg IV, PO, or sublingual every 6 hours for vomiting
 iii. Acetazolamide – up to 250 PO mg twice a day
 1. Pediatric dosing is 2.5 mg/kg up to a max of 250 mg twice a day
 2. Acetazolamide speeds acclimatization and therefore helps in treating acute mountain sickness
 iv. Dexamethasone - 8 mg IM, IV, or PO followed by 4 mg IM, IV, or PO every 6 hours until symptoms resolve
 1. Pediatric dosing is 0.15 mg/kg IM, IV, or PO every 6 hours
 2. Dexamethasone helps treat the symptoms of acute mountain sickness and may be used as an adjunctive therapy in severe acute mountain sickness when the above measures alone do not ameliorate the symptoms. In these circumstances, patients should also initiate descent, as dexamethasone does not facilitate acclimatization
c. HACE – All below listed therapies should be considered as adjunctive to descent. Descent should always be the primary treatment modality
 i. Dexamethasone – at above adult and pediatric doses
 1. Dexamethasone helps treat the symptoms of HACE and should be initiated in HACE. In these circumstances, patients should also initiate descent
 ii. Consider use of acetazolamide at the above dosing

d. HAPE - All below listed therapies should be considered as adjunctive to descent. Descent should always be the primary treatment modality
 i. Nifedipine SR 60 mg PO once a day may be added to the patient’s regimen
 ii. Tadalafil (20-40 mg PO once daily) or sildenafil (20 mg PO three times a day) may be used if nifedipine is not available. Multiple pulmonary vasodilators should not be used concurrently

Pertinent Assessment Findings
1. Consider airway management needs in the patient with severe alteration in mental status
2. HAPE will present with increasing respiratory distress and rales on exam
3. HACE will present with mental status changes, ataxia, and progressing to coma

Quality Improvement

Key Documentation Elements
1. Patient’s itinerary, including starting altitude, highest altitude gained and rate of ascent
2. Presence (or absence) of prophylaxis against altitude (including medications such as acetazolamide, sildenafil)
3. Total altitude descended

Performance Measures
1. Mechanism of treatment for acute mountain sickness, HACE or HAPE
2. Medical decision-making regarding treatment choice (e.g. weather, inability to descend)

References

Revision Date
September 15, 2014
Conducted Electrical Weapon (e.g. TASER®)

(No NEMSIS category)

Patient Care Goals

1. Manage the condition that triggered the application of the conducted electrical weapon with special attention to patients meeting criterion for excited delirium
2. Make sure patient is appropriately secured or restrained with assistance of law enforcement to protect the patient and staff
3. Perform comprehensive trauma and medical assessment as patients who have received conducted electrical weapon may have already been involved in physical confrontation
4. If discharged from a distance, two single barbed darts (13mm length) should be located. Do not remove barbed dart from sensitive areas (head, neck, hands, feet or genitals)

Patient Presentation

Inclusion Criteria

1. Patient received either the direct contact discharge or the distance two barbed dart discharge of the conducted electrical weapon
2. Patient may have sustained fall or physical confrontation trauma
3. Patient may be under the influence of toxic substances and or may have underlying medical or psychiatric disorder

Exclusion Criteria

No specific recommendations

Patient Management

Assessment

1. Once patient has been appropriately secured or restrained with assistance of law enforcement, perform primary and secondary assessment including 3-lead EKG, pulse oximeter, and consider 12-lead EKG
2. Evaluate patient for evidence of excited delirium manifested by varied combination of agitation, reduced pain sensitivity, elevated temperature, persistent struggling, or hallucinosis

Treatment and Interventions

1. Make sure patient is appropriately secured or restrained with assistance of law enforcement to protect the patient and staff. Consider chemical sedation if patient struggling against physical restraints and may harm themselves or others
2. Conservative programs treat all barbed darts as a foreign body and leave them for physician removal while more progressive programs allow EMS or law enforcement to remove barbed darts except for sensitive areas (head, neck, hands, feet or genitals)
3. Treat medical and traumatic injury
Patient Safety Considerations

1. Before removal of the barbed dart, make sure the cartridge has been removed from the conducted electrical weapon
2. Patient should not be restrained in the prone, face down or hog tied position as respiratory compromise is a significant risk
3. Conducted electrical weapon patient may have underlying pathology before being tased (refer to other guidelines for managing the underlying medical/traumatic pathology)
4. Perform a comprehensive assessment with special attention looking for to signs and symptoms that may indicate agitated delirium
5. Transport the patient to the hospital if they have concerning signs or symptoms
6. EMS providers who respond for a conducted electrical weapon patient should not perform a "medical clearance" for law enforcement

Notes/Educational Pearls

Key Considerations

Conducted electrical weapon can be discharged in three fashions: direct contact without the use of the darts, a single dart with addition contact by direct contact of weapon or from a distance up to 35 feet with two darts. The device delivers 19 pulses per second with an average current per pulse of 2.1 milliamps which in combination with toxins/drugs, patient’s underlying diseases, excessive physical exertion, and trauma may precipitate arrhythmias, thus consider EKG monitoring and 12-lead EKG assessment

Drive Stun is a direct weapon two-point contact which is designed to generate pain and not incapacitate the subject. Only local muscle groups are stimulated with the Drive Stun technique

Pertinent Assessment Findings

Thoroughly assess the tased patient for trauma as the patient may have fallen from standing or higher. Ascertain if more than one TASER® cartridge was used (by one or more officers, in effort to identify total number of possible darts and contacts)

Quality Improvement

Key Documentation Elements

1. If darts removed, document the removal location in the patient care report
2. Physical exam trauma findings
3. Cardiac rhythm and changes
4. Neurologic status assessment findings

Performance Measures

1. Comprehensive patient documentation as this is a complex patient
2. Abnormal findings or vital signs were addressed
3. Patient received EKG or 12-lead EKG evaluation
4. If indicated, review for appropriate restraint technique

References

http://www.acepnews.com/single-view/d257135701cb06fa0c94609c1eb6e67e.html?tx_ttnews%5Btt_news%5D=1345

Revision Date
September 15, 2014
Electrical Injuries

(9914095 – Electrical Injuries)

Patient Care Goals
1. Prevent additional harm to patient
2. Identify life threatening issues such as dysrhythmias and cardiac arrest
3. Identify characteristics of electrical source to communicate to receiving facility (voltage, amperage, alternating current (AC) versus direct current (DC))
4. Understand that deep tissue injury can be far greater than external appearance
5. Have high index of suspicion for associated trauma due to patient being thrown
6. Determine most appropriate disposition for the patient as many will require burn center care and some may require trauma center care

Patient Presentation

Inclusion Criteria
Exposure to electrical current (AC or DC)

Exclusion Criteria
None

Patient Management

Assessment
1. Verify scene is secure. The electrical source must be disabled prior to assessment
2. Assess primary survey with specific focus on dysrhythmias or cardiac arrest. Apply a cardiac monitor
3. Identify all sites of burn injury. If the patient became part of the circuit, there will be an additional site near the contact with ground
 a. Electrical burns are often full thickness and involve significant deep tissue damage
4. Assess for potential associated trauma and note if the patient was thrown from contact point
 a. If patient has altered mental status, assume trauma was involved and treat accordingly
5. Assess for potential compartment syndrome from significant extremity tissue damage
6. Determine characteristics of source if possible – AC or DC, voltage, amperage and also time of injury

Treatment and Interventions
1. Identify dysrhythmias or cardiac arrest – even patients who appear dead (particularly dilated pupils) may have good outcomes with prompt intervention – see appropriate protocol for additional information
2. Immobilize if associated trauma suspected. See Trauma section guidelines
3. Apply dry dressing to any wounds
4. Remove constricting clothing and jewelry since additional swelling is possible
5. Administer fluid resuscitation per burn protocol
 Remember that external appearance will underestimate the degree of tissue injury
6. Electrical injury patients should be taken to a burn center whenever possible since these injuries can involve considerable tissue damage

All Rights Reserved V.11-14
7. When there is significant associated trauma this takes priority, if local trauma resources and burn resources are not in the same facility

Patient Safety Considerations
1. Verify no additional threat to patient
2. Shut off electrical power
3. Move patient to shelter if electrical storm activity still in area

Notes/Educational Pearls

Key Considerations
1. Electrical current causes injury through three main mechanisms:
 a. Direct tissue damage, altering cell membrane resting potential, and eliciting tetany in skeletal and/or cardiac muscles
 b. Conversion of electrical energy into thermal energy, causing massive tissue destruction and coagulative necrosis
 c. Mechanical injury with direct trauma resulting from falls or violent muscle contraction
2. Anticipate atrial and/or ventricular dysrhythmias as well as cardiac arrest
3. The mortality related to electrical injuries is impacted by several factors:
 a. Route current takes through the body — current traversing the heart has higher mortality
 b. Type of current: AC vs. DC
 i. AC is more likely to cause cardiac dysrhythmias while DC is more likely to cause deep tissue burns however either type of current can cause any injury
 ii. DC typically causes one muscle contraction while AC can cause repeated contractions
 iii. Both types of current can cause involuntary muscle contractions that do not allow the victim to let go of the electrical source
 iv. AC is more likely to cause ventricular fibrillation while DC is more likely to cause asystole
 c. The amount of current impacts mortality more than the voltage
<table>
<thead>
<tr>
<th>Current level (Milliamperes)</th>
<th>Probable Effect on Human Body of 120 V, 60 Hz AC for 1 second</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mA</td>
<td>Perception level. Slight tingling sensation. Still dangerous if wet conditions.</td>
</tr>
<tr>
<td>5mA</td>
<td>Slight shock felt; not painful but disturbing. Average individual can let go. However, strong involuntary reactions to shocks in this range may lead to injuries.</td>
</tr>
<tr>
<td>6mA - 16mA</td>
<td>Painful shock, begin to lose muscular control. Commonly referred to as the freezing current or "let-go" range.</td>
</tr>
<tr>
<td>17mA - 99mA</td>
<td>Extreme pain, respiratory arrest, severe muscular contractions. Individual cannot let go. Death is possible.</td>
</tr>
<tr>
<td>100mA - 2000mA</td>
<td>Ventricular fibrillation (uneven, uncoordinated pumping of the heart.) Muscular contraction and nerve damage begins to occur. Death is likely.</td>
</tr>
<tr>
<td>> 2,000mA</td>
<td>Cardiac arrest, internal organ damage, and severe burns. Death is probable.</td>
</tr>
</tbody>
</table>

Pertinent Assessment Findings
1. Identification of potential trauma concomitant with electrical injury
2. Presence of cardiac dysrhythmias

Quality Improvement

Key Documentation Elements
1. Characteristics of electrical current
2. Downtime if found in cardiac arrest
3. Positioning of the patient with respect to the electrical source
4. Accurate description of external injuries
5. Document presence or absence of associated trauma

Performance Measures
1. Confirmation of scene safety
2. Documentation of electrical source and voltage if known
3. Documentation of cardiac monitoring
4. Documentation of appropriate care of associated traumatic injuries

References

Revision Date
September 15, 2014
Lightning/Lightning Strike Injury

(No NEMSIS category)

Patient Care Goals
1. Identify patient(s) as lightning strike victim(s)
2. Move to safe area
3. Initiate immediate resuscitation on cardiac arrest victim(s), within limits of mass casualty care
4. Cardiac monitoring during transport
5. Treat associated traumatic injuries

Patient Presentation
1. Lightning strikes may happen in a variety of environmental conditions. Most commonly they occur in outdoor or wilderness circumstances. Golf courses, exposed mountains or ledges and farms/fields all present conditions that increase risk of lightning strike, when hazardous meteorological conditions exist
2. Lacking bystander observations or history, it is not always immediately apparent that patient has been the victim of a lightning strike. Subtle findings such as injury patterns might suggest lightning injury

Inclusion Criteria
Patients of all ages who have been the victim of lightning strike injury

Exclusion Criteria
No specific recommendations

Patient Management

Assessment
1. Cardiovascular
 a. Dysrhythmias
 b. Transient hypertension
2. Respiratory
 a. Apnea
 b. Agonal respirations
 c. Respiratory paralysis
3. Neurologic
 a. Seizures
 b. Confusion
 c. Paralysis
 d. Paraplegia
 e. Vertigo/dizziness
 f. Parasthesias
 g. Amnesia
 h. Memory deficits
 i. Anxiety
4. EENT
Fixed/dilated pupils possible (autonomic dysfunction)

5. Skin
 a. Ferning or fern-like superficial skin burn (“Lichtenberg figures”)
 b. Vascular instability may result in cool, mottled extremities
 c. Frequent first and/or second degree burns
 d. Third degree burns less common

6. Patient may be in full cardiopulmonary arrest or have only respiratory arrest, as injury is a result of DC current

7. May have stroke-like findings as a result of neurologic insult

8. May have secondary traumatic injury as a result of overpressurization, blast or missile injury.

9. Fixed/dilated pupils may be a sign of neurologic insult, rather than a sign of death/impending death. Should not be used as a solitary, independent sign of death for the purpose of discontinuing resuscitation in this patient population

Treatment and Interventions
1. Assure patent airway
 If in respiratory arrest only, manage airway as appropriate
2. If in cardiopulmonary arrest, refer to Cardiac Arrest (VF/VT/Asystole/PEA) guideline
3. Consider IV initiation. Avoid initiation through burned skin
4. Monitor EKG. Be alert for potential arrhythmias
 Consider 12-lead EKG, when available
5. Consider early pain management for burns or associated traumatic injury. See Pain Management guideline

Patient Safety Considerations
1. Recognize that repeat strike is a risk. Patient and rescuer safety is paramount
2. Victims do not carry or discharge a current, so the patient is safe to touch and treat

Notes/Educational Pearls

Key Considerations
1. Lightning strike cardiopulmonary arrest patients have a high rate of successful resuscitation, if initiated early, in contrast to general cardiac arrest statistics
2. There may be multiple victims
3. If multiple victims, cardiac arrest patients whose injury was witnessed or thought to be recent should be treated first and aggressively (reverse triage)
4. It may not be immediately apparent that the patient is a lightning strike victim
5. Injury pattern and secondary physical exam findings may be key in identifying patient as a victim of lightning strike
6. Lightning strike is a result of very high voltage, very short duration DC current exposure

Pertinent Assessment Findings
1. Presence of thermal or non-thermal burns
2. Evidence of trauma
3. Evidence of focal neurologic deficits
Quality Improvement

Key Documentation Elements
1. Initial airway status
2. Initial cardiac rhythm
3. Neurologic exam (initial and repeat)
4. Associated/secondary injuries
5. Pain scale documentation/pain management

Performance Measures
1. Cardiopulmonary issues addressed early and documented appropriately
2. Patient transported to closest appropriate facility
3. Pain scale documented and treated per guidelines (when appropriate)

References
1. Aldana NN. Severe rhabdomyolysis without renal injury associated with lightning strike. *Journal of Burn Care & Research: Official Publication of the American Burn Association* 34, no. 3 (June 2013): e209–212. doi:10.1097/BCR.0b013e31825ad9c8

47. Walsh KM. Lightning and severe thunderstorms in event management. *Current Sports Medicine Reports* 11, no. 3 (June 2012): 131–134. doi:10.1249/JSR.0b013e3182563e95

APPENDICES

I. Author, Reviewer, Federal Partner and Staff Information

Authors

Co-Principal Investigators
Carol A. Cunningham, MD
State Medical Director
Ohio Department of Public Safety, Division of EMS
Assistant Professor of Emergency Medicine
Akron General Medical Center and Northeast Ohio Medical University

Richard Kamin, MD
EMS Program Director
University of Connecticut Health Center
Medical Director
Connecticut Department of Health
Office of EMS

Workgroup Authors
Richard L. Alcorta, MD
State EMS Medical Director
Maryland Institute for Emergency Medical Services Systems (MIEMSS)

Craig Bates, MD, MS
Medical Director, Metro Life Flight
Associate Medical Director, Cleveland Department of Public Safety
Clinical Assistant Professor of Emergency Medicine, Case School of Medicine
Metrohealth Medical Center

Eric H. Beck, DO, MPH, NREMT-P
Chief Innovation Officer
Evolution Health
Associate Chief Medical Officer
AMR and Envision Healthcare

Sabina Braithwaite, MD, MPH
Medical Director, Wichita-Sedgwick County EMS System
Clinical Associate Professor of Emergency Medicine, University of Kansas

Eileen M. Bulger, MD
Professor of Surgery, Chief of Trauma
University of Washington
Anthony DeMond, MD
La Plata, Colorado, Fire-Based EMS and Durango Airport Medical Director

Mary Katherine Harper, DO
Physician/Core Faculty
Kingman Regional Medical Center

Douglas F. Kupas, MD
Commonwealth EMS Medical Director
Bureau of EMS
Pennsylvania Department of Health

Brian Moore, MD
Assistant Professor, Pediatrics
University of New Mexico
State Medical Director, New Mexico

Joe A. Nelson, DO, MS
State EMS Medical Director
Florida Department of Health

Manish I. Shah, MD
Assistant Professor, Department of Pediatrics, Section of Emergency Medicine
Baylor College of Medicine
Texas Children’s Hospital

J. Matthew Sholl, MD, MPH
Associate Professor and EMS Medical Director
Department of Emergency Medicine
Maine Medical Center

Harry Sibold, MD
Montana State EMS Medical Director
Montana Board of Medical Examiners

Peter P. Taillac, MD
Clinical Professor
University of Utah School of Medicine
State EMS Medical Director
Utah Bureau of EMS and Preparedness
Utah Department of Health

Contributing Authors
Kathleen Adelgais, MD, MPH
Associate Professor, Pediatrics
University of Colorado Denver School of Medicine
Lisa L. Booze, PharmD, CSPI
Clinical Coordinator
Maryland Poison Center
University of Maryland School of Pharmacy

Lorin Browne, DO
Assistant Professor, Pediatrics
Medical College of Wisconsin
Pediatric Medical Director
Milwaukee County and Kenosha County EMS

Mark X. Cicero, MD
Assistant Professor of Pediatrics
Director, Pediatric Disaster Preparedness
Section of Pediatric Emergency Medicine
Department of Pediatrics
Yale University School of Medicine

Toni Gross, MD, MPH
Clinical Associate Professor of Child Health
University of Arizona College of Medicine – Phoenix
Phoenix Children's Hospital

Kate Remick, MD
Assistant Professor, Pediatrics
University of Texas Southwestern Medical School at Austin
Dell Children’s Medical Center of Central Texas
Associate EMS Medical Director
City of Austin/Travis County EMS

Technical Reviewers

Timothy T. Pieh, MD
Medical Director
Emergency Medicine
MaineGeneral Medical Center

Amy Raubenolt, MD, MPH, MEd
EMS Medical Director
Akron General Medical Center
James C. Suozzi, DO, NRP
Associate Medical Director EMS/Trauma Medical Director
Cheshire Medical Center/Dartmouth-Hitchcock

Key Federal Partners for Project

Drew Dawson
Director
Office of Emergency Medical Services
National Highway Traffic Safety Administration

Elizabeth Edgerton, MD, MPH
Director
Division of Child, Adolescent and Family Health (DCAFH) Maternal and Child Health Bureau
Health Resources and Services Administration

Susan McHenry
Office of Emergency Medical Services
National Highway Traffic Safety Administration
Cooperative Agreement Project Manager

Project Staff

Mary Hedges
Program Manager
Guidelines Project Manager
National Association of State EMS Officials

Kevin McGinnis, MPS, Paramedic
Program Manager
Guidelines Project Technical Writer/Editor
National Association of State EMS Officials
II. Public Review Comment Contributors
Listed in the order comments were received through two comment periods:

Association of Critical Care Transport
National EMS Management Association
Vincent McGregor Jr., Lord Fairfax Community College
Erik Glassman, National Safety Council
Dave Finger, National Volunteer Fire Council
James M. Osaki, DDS, Indian Health Service
Paul Hinchey, MD, National Association of EMTs (NAEMT)
EMS for Children (EMSC)
American Academy of Pediatrics
Danny Thomas, Medical College of Wisconsin
Ken Zafren, MD, Alaska State EMS Medical Director
Stephen Vetrano, MD, New Jersey State EMS Medical Director
Wayne Vanderkolk, MD, Michigan
American College of Surgery – Committee on Trauma (ACS-COT) via Cathy Gotschall, National Highway Traffic Safety Administration

Nebraska Attack on Asthma
Eric Jaeger, True North Group
Shawn Baumgartner, NRP ASM, Valley Ambulance Services, Inc
Carman Allen, Kansas EMSC Coordinator
Robert Lloyd, Paramedic, Eastlake, Ohio
Andrew Johnson, New York Office of EMS
Marlow Macht, MD, Clark County, Washington
Rick Sherlock, Association of Air Medical Services (AAMS)
Jay Cloud, San Jacinto College, Pasadena, Texas
Whitney Levano, Utah EMSC Advisory Committee
Emergency Nurses Association (ENA)
Craig Manifold, NAEMT
North Carolina Chapter of National Association of EMS Physicians (NAEMSP)
David Sugarman for Scott Sasser of Centers for Disease Control and Prevention
Richard Childress, International Association of Flight and Critical Care Paramedics
John Lyng, North Memorial Ambulance; Standards & Clinical Practice Committee, NAEMSP
Michael Millin, MD, Johns Hopkins University
Philip Ewing, Utah Southwestern Medical Center
Sean Caffrey, National EMS Management Association (NEMSMA)
Christian Martin-Gill, MD, University of Pittsburgh Medical Center
Richard “Chip” Cooper, New Hampshire EMS Office
Patrick Drayna, MD, Medical College of Wisconsin/Children's Hospital of Wisconsin
David Seigel, MD, NICHD Liaison to the American Association of Pediatrics (AAP) Disaster Preparedness Advisory Council
Tom Derenne, American Academy of Emergency Medicine (AAEM) EMS Committee
Paul Hinchey, MD, NAEMT
Ken Knipper, National Volunteer Fire Council (NVFC)
Mary Fallat, Pediatric Surgery
Arthur Cooper, MD
American College of Emergency Physicians (ACEP) Pediatric Committee
Paul Sharpe, NASEMSO Data Managers Chair
III. Medications

The project team considered the use of Institute for Safe Medication Practices (ISMP) Tall Man Letters methodology to avoid the miscommunication of lookalike drug names. Upon review of the list and the limited number of medications carried by EMS, as well as the expected use of this document, it was elected not to institute this measure into our medication list. We recommend EMS agencies consider incorporating these measures into practice where appropriate.

Reference: Trade names, class, pharmacologic action and contraindications (relative and absolute) information from the website http://www.medscape.com, accessed July 14, 2014 and July 15, 2014. Additional references include the 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care and position statements from the American Academy of Clinical Toxicology and the European Association of Poison Control Centers (http://clintox.org/documents/positionpapers/Cathartics.pdf). NOTE: Not all contraindications listed on the http://www.medscape.com website were included for the purposes of this document. Contraindications which were not pertinent to EMS providers were not included for the purposes of streamlining this document.

MEDICATIONS

Name, Class, Pharmacologic Action, Indications, Contraindications

(The indications cited for the medications are specific to the EMS/prehospital setting.)

Acetazolamide
Name – Diamox Sequels®
Class – Carbonic anhydrase inhibitors
Pharmacologic Action - Inhibits hydrogen ion excretion in renal tubule, increasing sodium, potassium, bicarbonate, and water excretion and producing alkaline diuresis
Indications – Acute mountain sickness
Contraindications – Known hypokalemia/hyponatremia, hypersensitivity to acetazolamide or sulfa, liver disease, renal disease, cirrhosis, long term administration in patients with chronic, noncongestive angle-closure glaucoma
Acetaminophen

Name – There are multiple over-the-counter medications, as well as scheduled drugs, that include acetaminophen (Tylenol®) as an active ingredient

Class – Analgesics, antipyretic, other

Pharmacologic Action - May work peripherally to block pain impulse generation; may also inhibit prostaglandin synthesis in CNS

Indications - Pain control, fever control

Contraindications - Hypersensitivity, severe acute liver disease

Acetic acid (vinegar)

Name - Vinegar

Class – Other

Pharmacologic Action – Stabilizes nematocyst discharge in non-United States jellyfish thus decreasing pain

Indications – Pain control for jellyfish envenomation (outside of the United States (US))

Contraindications – May increase nematocyst discharge for US jellyfish and therefore should be used outside of the US only

Acetylcysteine

Name - Mucomyst®, Acetadote®

Class – Antidotes, other

Pharmacologic Action - Acts as sulfhydryl group donor to restore liver glutathione; may also scavenge free radicals to prevent delayed hepatotoxicity as antioxidant; encourages sulfation pathway of metabolism for acetaminophen

Indications – Antidote for acetaminophen overdose

Contraindications – Acute asthma

WARNING: Nausea and vomiting are common adverse effects following the oral administration of acetylcysteine

Activated Charcoal

Name – Actidose-Aqua®

Class – Antidotes, other

Pharmacologic Action - Adsorbs a variety of drugs and chemicals (e.g. physical binding of a molecule to the surface of charcoal particles); desorption of bound particles may occur unless the ratio of charcoal to toxin is extremely high

Indications – Overdose and poisoning

Contraindications – Unprotected airway (beware of aspiration), caustic ingestions, intestinal obstruction
Adenosine
Name – Adenocard®
Class - Antidysrhythmics
Pharmacologic Action - Slows conduction through AV node and interrupts AV reentry pathways, which restore normal sinus symptoms
Indications – Conversion of regular, narrow complex tachycardia – stable supraventricular tachycardia (SVT) or regular, monomorphic wide complex tachycardia
Contraindications – Hypersensitivity, second or third degree AV Block (except those on pacemakers), sick sinus syndrome, atrial flutter or fibrillation, ventricular tachycardia

Albuterol
Name – Proventil®, Ventolin®, Proair®, Accuneb®
Class – Beta-2 agonist
Pharmacologic Action – Beta-2 receptor agonist with some beta-1 activity; relaxes bronchial smooth muscle with little effect on heart rate
Indications – Bronchospastic lung disease
Contraindications – Hypersensitivity, tachycardia secondary to heart condition

Amiodarone
Name – Pacerone®, Cord!arone®, Nexterone®
Class - Class III antidysrhythmics
Pharmacologic Action - Class III antidysrhythmic agent, which inhibits adrenergic stimulation; affects sodium, potassium, and calcium channels; markedly prolongs action potential and repolarization; decreases AV conduction and sinus node function
Indications – Management of regular wide complex tachycardia in stable patients, irregular wide complex tachycardia in stable patients, and as antidysrhythmic for the management of ventricular fibrillation (VF) and pulseless ventricular tachycardia (VT)
Contraindications – Hypersensitivity, Severe sinus node dysfunction, second degree or third degree heart block or bradycardia causing syncope (except with functioning artificial pacemaker), cardiogenic shock
WARNING: Avoid during breastfeeding

Amyl Nitrite
Name – component of the Cyanide Antidote Kit®
Class – Cyanide antidote
Pharmacologic Action - Reacts with hemoglobin to form methemoglobin, an oxidized form of hemoglobin incapable of oxygen transport but with high affinity for cyanide. Cyanide preferentially binds to methemoglobin over cytochrome a3, forming the nontoxic cyanomethemoglobin
Indications - Acute cyanide toxicity
Contraindications – None in the case of suspected pure cyanide toxicity noted, documented hypersensitivity, suspected or confirmed smoke inhalation and/or carbon monoxide poisoning

WARNING: There is a risk of worsening hypoxia due to methemoglobin formation

Aspirin
Name – Multiple over-the-counter medications, as well as scheduled drugs, include aspirin as an active ingredient. These include, but are not limited to, Bayer Buffered Aspirin®, Alka-Seltzer with Aspirin®, Ascriptin®, Bayer Women’s Low Dose®, Ecotrin®

Class – Antiplatelet agent, non-steroidal anti-inflammatory drug (NSAID)

Pharmacologic Action - Inhibits synthesis of prostaglandin by cyclooxygenase; inhibits platelet aggregation; has antipyretic and analgesic activity

Indications – Antiplatelet agent for the care of patients suspected of suffering from an acute coronary syndrome

Contraindications - Hypersensitivity to aspirin or NSAIDs (aspirin-associated hypersensitivity reactions include aspirin-induced urticarial or aspirin-intolerant asthma), bleeding GI ulcers, hemolytic anemia from pyruvate kinase (PK) and glucose-6-phosphate dehydrogenase (G6PD) deficiency, hemophilia, hemorrhagic diathesis, hemorrhoids, lactating mother, nasal polyps associated with asthma, sarcoidosis, thrombocytopenia, ulcerative colitis

Atropine
Name - Atropen®, a component of Mark I® kits and DuoDote®

Class – Anticholinergic, toxicity antidotes

Pharmacologic Action - Competitively inhibits action of acetylcholinesterase on autonomic effectors innervated by postganglionic nerves

Indications – Management of nerve agent toxicity, symptomatic bradycardia (primary or related to toxin ingestion), organophosphate and carbamate insecticide toxicity

NOTE: Ineffective in hypothermic bradycardia

Contraindications - No absolute contraindications for ACLS, documented hypersensitivity in non-ACLS/nerve agent/organophosphate scenarios

RELATIVE CONTRAINDICATIONS: Narrow-angle glaucoma, GI obstruction, severe ulcerative colitis, toxic megacolon, bladder outlet obstruction, myasthenia gravis, hemorrhage w/ cardiovascular instability, thyrotoxicosis

Calcium Chloride
Name – Calcium Chloride

Class – Antidotes, other; calcium salts

Pharmacologic Action - Bone mineral component; cofactor in enzymatic reactions, essential for neurotransmission, muscle contraction, and many signal transduction pathways

Indications – For use in topical burns (hydrofluoric acid) or for use in calcium channel blocker overdose
Contraindications – Hypercalcemia, documented hypersensitivity, life-threatening cardiac arrhythmias may occur in known or suspected severe hypokalemia

WARNING: There is a risk for digitalis toxicity. Be cautious of peripheral IV use as significant tissue necrosis at injection site may occur

Calcium Gluconate

Name – Gluconate®

Class – Antidotes, other; calcium salts

Pharmacologic Action - Bone mineral component; cofactor in enzymatic reactions, essential for neurotransmission, muscle contraction, and many signal transduction pathways

Indications - For use in topical burns (hydrofluoric acid) or for use in calcium channel blocker overdose

Contraindications – Hypercalcemia, documented hypersensitivity, sarcoidosis, life-threatening cardiac arrhythmias may occur in known or suspected severe hypokalemia

WARNING: There is a risk for digitalis toxicity

Cimetidine

Name - Tagamet®

Class – Histamine H2 antagonist

Pharmacologic Action - blocks H2-receptors of gastric parietal cells, leading to inhibition of gastric secretions

Indications – For the management of gastric or duodenal ulcers, gastroesophageal reflux, as an adjunct in the treatment of urticarial and/or pruritis in patients suffering from allergic reaction

Contraindications - Hypersensitivity to cimetidine or other H2-receptor antagonists

Dexamethasone

Name – Decadron®, Dexasone®

Class – Corticosteroid, anti-inflammatory drugs

Pharmacologic Action - Potent glucocorticoid with minimal to no mineralocorticoid activity

Decreases inflammation by suppressing migration of polymorphonuclear leukocytes (PMNs) and reducing capillary permeability; stabilizes cell and lysosomal membranes, increases surfactant synthesis, increases serum vitamin A concentration, and inhibits prostaglandin and proinflammatory cytokines; suppresses lymphocyte proliferation through direct cytolysis, inhibits mitosis, breaks down granulocyte aggregates, and improves pulmonary microcirculation

Indications - Used in the management of croup and bronchospasm, as well as the management of patients suffering from high altitude cerebral edema (HACE)

Contraindications – Documented hypersensitivity, systemic fungal infection, cerebral malaria

Dextrose

Name – D50W, DGlucose®, glucose

Class – Glucose-elevating agents; metabolic and endocrine, other

All Rights Reserved V.11-14
Pharmacologic Action - Parenteral dextrose is oxidized to carbon dioxide and water, and provides 3.4 kilocalories/gram of d-glucose

Indications – Used for the management of hypoglycemia

Contraindications - Hyperglycemia, anuria, diabetic coma, intracranial or intraspinal hemorrhage, dehydrated patients with delirium, glucose-galactose malabsorption syndrome, and documented hypersensitivity

Diazepam

Name – Valium®, Diastat®, AcuDial®

Class – Benzodiazepine, anticonvulsants, skeletal muscle relaxants, anxiolytic

Pharmacologic Action - Modulates postsynaptic effects of GABA-A transmission, resulting in an increase in presynaptic inhibition. Appears to act on part of the limbic system, as well as on the thalamus and hypothalamus, to induce a calming effect

Indications – For use in agitated or violent patients, as well as for the management of seizures

Contraindications – Documented hypersensitivity, severe respiratory depression

Diltiazem

Name – Includes Cardizem®, Dilacor®, Diltiaz®

Class – Calcium channel blocker, antidysrhythmic type IV

Pharmacologic Action - Inhibits extracellular calcium ion influx across membranes of myocardial cells and vascular smooth muscle cells, resulting in inhibition of cardiac and vascular smooth muscle contraction and thereby dilating main coronary and systemic arteries; no effect on serum calcium concentrations; substantial inhibitory effects on cardiac conduction system, acting principally at AV node, with some effects at sinus node

Indications – For management of narrow complex tachycardias

Contraindications – Documented hypersensitivity, Wolff-Parkinson-White syndrome, Lown-Ganong-Levine syndrome, symptomatic severe hypotension (systolic BP < 90 mm Hg), sick sinus syndrome (if no pacemaker), second and third degree heart block (if no pacemaker present), and complete heart block. Contraindications for IV administration: Use in newborns (because of benzyl alcohol), concomitant beta-blocker therapy, cardiogenic shock, ventricular tachycardia (must determine whether origin is supraventricular or ventricular)

Diphenhydramine

Name – Benadryl®

Class – Antihistamine – first generation

Pharmacologic Action - Histamine H1-receptor antagonist of effector cells in respiratory tract, blood vessels, and GI smooth muscle

Indications – For urticarial and/or pruritis in the management of patients suffering from allergic reaction as well as for the management of patients suffering from dystonia/akasthesia

Contraindications – Documented hypersensitivity, use controversial in lower respiratory tract disease (such as acute asthma), premature infants and neonates
Dopamine

Name - Intropin®

Class – Inotropic agent; catecholamine; pressor

Pharmacologic Action - Endogenous catecholamine, acting on both dopaminergic and adrenergic neurons. Low dose stimulates mainly dopaminergic receptors, producing renal and mesenteric vasodilation; higher dose stimulates both beta-1-adrenergic and dopaminergic receptors, producing cardiac stimulation and renal vasodilation; large dose stimulates alpha-adrenergic receptors

Indications – As a pressor agent used in the management of shock

Contraindications - Hypersensitivity to dopamine, pheochromocytoma, ventricular fibrillation, uncorrected tachyarrhythmias

WARNING: Dopamine is a vesicant and can cause severe tissue damage if extravasation occurs

Droperidol

Name - Inapsine®

Class – Antiemetic agents; antipsychotic

Pharmacologic Action - Antiemesis: dopamine receptor blockade in brain, predominantly dopamine-2 receptor. When reuptake is prevented, a strong antidopaminergic, antiserotonergic response occurs. Droperidol reduces motor activity, anxiety, and causes sedation; also possesses adrenergic-blocking, antifibrillatory, antihistaminic, and anticonvulsive properties

Indications – For use in the patient with acute delirium or psychosis

Contraindications – Hypersensitivity, known or suspected prolonged QT interval; QTc interval > 450 msec in females or > 440 msec in males

WARNING: Use with caution in patients with bradycardia, cardiac disease, concurrent MAO inhibitor therapy, Class I and Class III dysrhythmics or other drugs that prolong the QT interval and cause electrolyte disturbances due to its adverse cardiovascular effects, i.e. QT prolongation, hypotension, tachycardia, and torsades de pointes

Epinephrine

Name – EpiPen®, TwinJect®, Adrenaclick®, Auvi-Q, Adrenalin®, AsthmaNefrin®, Vaponefrin®

Class - Alpha/beta adrenergic agonist

Pharmacologic Action - Strong alpha-adrenergic effects, which cause an increase in cardiac output and heart rate, a decrease in renal perfusion and peripheral vascular resistance, and a variable effect on BP, resulting in systemic vasoconstriction and increased vascular permeability. Strong beta-1- and moderate beta-2-adrenergic effects, resulting in bronchial smooth muscle relaxation

Secondary relaxation effect on smooth muscle of stomach, intestine, uterus, and urinary bladder

Indications – For use in the management of patients suffering anaphylaxis, shock, cardiac arrest, bradycardia, or in the nebulized form for croup/bronchiolitis and IM form for refractory acute asthma

Contraindications – Hypersensitivity, cardiac dilatation and coronary insufficiency
Famotidine

Name - Pepcid®

Class – Histamine H2 antagonist

Pharmacologic Action - Blocks H2 receptors of gastric parietal cells, leading to inhibition of gastric secretions

Indications - For the management of gastric or duodenal ulcers, gastroesophageal reflux, as an adjunct in the treatment of urticarial and/or pruritus in patients suffering from allergic reaction

Contraindications - Hypersensitivity to famotidine or other H2-receptor antagonists

Fentanyl

Name – Currently only available in the generic form (formerly Sublimaze®)

Class – Synthetic opioid, opioid analgesics

Pharmacologic Action - Narcotic agonist-analgesic of opiate receptors; inhibits ascending pain pathways, thus altering response to pain; increases pain threshold; produces analgesia, respiratory depression, and sedation

Indications – Management of acute pain

Contraindications – Hypersensitivity

WARNING: Should be used with caution in the elderly and in patients with hypotension, suspected gastrointestinal obstruction, head injury, and concomitant CNS depressants

Glucagon

Name – GlucaGen®, Glucagon Emergency Kit®, GlucaGen HypoKit®

Class - Hypoglycemia antidotes, glucose-elevating agents, other antidotes (e.g. beta-blocker or calcium channel blocker overdose)

Pharmacologic Action - Insulin antagonist. Stimulates cAMP synthesis to accelerate hepatic glycogenolysis and gluconeogenesis. Glucagon also relaxes smooth muscles of GI tract

Indications – For the management of hypoglycemic patients as well as patients suffering symptomatic bradycardia after beta blocker or calcium channel blocker overdose

Contraindications – Hypersensitivity, pheochromocytoma, insulinoma

WARNING: Nausea and vomiting are common adverse effects following the administration of glucagon

Haloperidol

Name – Haldol®, Haldol Decanoate®, Haloperidol LA®, Peridol®

Class – First generation antipsychotic

Pharmacologic Action - Antagonizes dopamine-1 and dopamine-2 receptors in brain; depresses reticular activating system and inhibits release of hypothalamic and hypophyseal hormones

Indications – For the management of acute psychosis or agitated/violent behavior refractory to non-pharmacologic interventions

Contraindications – Documented hypersensitivity, Severe CNS depression (including coma), neuroleptic malignant syndrome, poorly controlled seizure disorder, Parkinson’s disease
WARNING: Risk of sudden death, torsades de pointes, and prolonged QT interval from off-label IV administration of higher than recommended dose. Continuous cardiac monitoring is required if administering IV

Hydrocortisone succinate
Name – Cortef®, SoluCortef®
Class - Corticosteroid
Pharmacologic Action - Glucocorticoid; elicits mild mineralocorticoid activity and moderate anti-inflammatory effects; controls or prevents inflammation by controlling rate of protein synthesis, suppressing migration of polymorphonuclear leukocytes (PMNs) and fibroblasts, and reversing capillary permeability
Indications – For the management of adrenal insufficiency
Contraindications - Untreated serious infections (except tuberculous meningitis or septic shock), idiopathic thrombocytopenic purpura, intrathecal administration (injection), documented hypersensitivity

Hydroxocobalamin
Name – Cyanokit®
Class – Cyanide antidote
Pharmacologic Action - Vitamin B12 with hydroxyl group complexed to cobalt which can be displaced by cyanide resulting in cyanocobalamin that is renally excreted
Indications – For the management of cyanide toxicity
Contraindications – Documented hypersensitivity
WARNING: Will cause discoloration of the skin and urine, can interfere with pulse oximetry. Due to its interference with certain diagnostic blood tests, the performance of prehospital phlebotomy is preferable prior to the administration of hydroxocobalamin

Ibuprofen
Name – There are multiple over-the-counter medications that include ibuprofen, such as Advil®, Motrin®
Class – Non-steroidal anti-inflammatory drug (NSAID)
Pharmacologic Action - Inhibits synthesis of prostaglandins in body tissues by inhibiting at least 2 cyclo-oxygenase (COX) isoenzymes, COX-1 and COX-2. May inhibit chemotaxis, alter lymphocyte activity, decrease proinflammatory cytokine activity, and inhibit neutrophil aggregation; these effects may contribute to anti-inflammatory activity
Indications – For the acute management of pain or as an antipyretic
Contraindications - Aspirin allergy; perioperative pain in setting of coronary artery bypass graft (CABG) surgery; preterm infants with untreated proven or suspected infection; bleeding with active intracranial hemorrhage or GI bleed; thrombocytopenia, coagulation defects, proven or necrotizing enterocolitis, significant renal impairment, congenital heart disease where patency or the patent ductus arteriosis (PDA) is necessary for pulmonary or systemic blood flow
Ipratropium

Name – Atrovent®

Class – Anticholinergics, respiratory

Pharmacologic Action - Anticholinergic (parasympatholytic) agent; inhibits vagally mediated reflexes by antagonizing acetylcholine action; prevents increase in intracellular calcium concentration that is caused by interaction of acetylcholine with muscarinic receptors on bronchial smooth muscle

Indications – For the management of asthma and COPD

Contraindications - Documented hypersensitivity to ipratropium, atropine, or derivatives.

Ketamine

Name – Ketalar®

Class – General anesthetics, systemic

Pharmacologic Action - Produces dissociative anesthesia. Blocks N-methyl D-aspartate (NMDA) receptor

Indications – For the management of agitated or violent behavior

Contraindications – Hypersensitivity

RELATIVE/CONTROVERSIAL CONTRAINDICATIONS: Head trauma, intracranial mass/hemorrhage, hypertension, angina, and stroke, underlying psychiatric disorder

WARNING: Overdose may lead to panic attacks and aggressive behavior; rarely seizures, increased ICP, and cardiac arrest. Very similar in chemical makeup to PCP (phencyclidine), but it is shorter acting and less toxic

Ketoralac

Name - Toradol®

Class – Non-steroidal anti-inflammatory drug (NSAID)

Pharmacologic Action - Inhibits synthesis of prostaglandins in body tissues by inhibiting at least 2 cyclo-oxygenase (COX) isoenzymes, COX-1 and COX-2. May inhibit chemotaxis, alter lymphocyte activity, decrease proinflammatory cytokine activity, and inhibit neutrophil aggregation; these effects may contribute to anti-inflammatory activity

Indications – For the acute management of moderately severe pain

Contraindications – Allergy to aspirin, ketorolac, or other NSAIDs; women who are in active labor or are breastfeeding, significant renal impairment particularly when associated with volume depletion, previous or current GI bleeding, intracranial bleeding, coagulation defects, patients with a high risk of bleeding

Lidocaine

Name – Lidocaine CV®, Lidopen®, Xylocaine®

Class – Class Ib antidyssrhythmics
Pharmacologic Action - Class 1b antidysrhythmic; combines with fast sodium channels and thereby inhibits recovery after repolarization, resulting in decreasing myocardial excitability and conduction velocity

Indications – For the management of refractory or recurrent ventricular fibrillation or pulseless VT
Contraindications - Hypersensitivity to lidocaine or amide-type local anesthetic, Adams-Stokes syndrome, SA/AV/intraventricular heart block in the absence of artificial pacemaker. CHF, cardiogenic shock, second and third degree heart block (if no pacemaker is present), Wolff-Parkinson-White Syndrome

Lorazepam
Name - Ativan®
Class – Anticonvulsants, other; antianxiety agent; anxiolytics; benzodiazepines
Pharmacologic Action - Sedative hypnotic with short onset of effects and relatively long half-life; by increasing the action of gamma-aminobutyric acid (GABA), which is a major inhibitory neurotransmitter in the brain, lorazepam may depress all levels of the CNS, including limbic and reticular formation
Indications – For the management of seizures, uncontrolled shivering in hypothermia, and for the management of agitated or violent patients suffering behavioral emergencies
Contraindications - Documented hypersensitivity, acute narrow angle glaucoma, severe respiratory depression, sleep apnea

Magnesium sulfate
Name - MgSO4
Class – Class V antidysrhythmic, electrolyte
Pharmacologic Action - Depresses CNS, blocks peripheral neuromuscular transmission, produces anticonvulsant effects; decreases amount of acetylcholine released at end-plate by motor nerve impulse. Slows rate of sino-atrial (SA) node impulse formation in myocardium and prolongs conduction time. Promotes movement of calcium, potassium, and sodium in and out of cells and stabilizes excitable membranes
Indications – For the management of torsades de pointes or for severe bronchoconstriction with impending respiratory failure, seizure during the third trimester of pregnancy or in the postpartum patient
Contraindications – Hypersensitivity, myocardial damage, diabetic coma, heart block, hypermagnesemia, hypercalcemia

Methylprednisolone
Name – Medrol®, Medrol Dosepak®, DepoMedrol®, SoluMedrol®
Class – Corticosteroid, anti-inflammatory agent
Pharmacologic Action - Potent glucocorticoid with minimal to no mineralocorticoid activity. Modulates carbohydrate, protein, and lipid metabolism and maintenance of fluid and electrolyte homeostasis. Controls or prevents inflammation by controlling rate of protein synthesis, suppressing

All Rights Reserved V.11-14
migration of polymorphonuclear leukocytes (PMNs) and fibroblasts, reversing capillary permeability, and stabilizing lysosomes at cellular level

Indications – For the management of acute bronchospastic disease as well as for adrenal insufficiency

Contraindications - Untreated serious infections, documented hypersensitivity, IM route is contraindicated in idiopathic thrombocytopenic purpura, traumatic brain injury (high doses)

Metoclopramide

Name – Reglan®, Metozolv ODT®

Class – Antiemetic agent, prokinetic agent

Pharmacologic Action - Blocks dopamine receptors (at high dose) and serotonin receptors in chemoreceptor trigger zone of CNS; and sensitizes tissues to acetylcholine; increases upper GI motility but not secretions; increases lower esophageal sphincter tone

Indications – For the management of nausea and vomiting

Contraindications - Hypersensitivity to metoclopramide or procainamide, GI hemorrhage, mechanical obstruction, perforation, history of seizures, pheochromocytoma. Other drugs causing extrapyramidal symptoms (e.g. phenothiazines, butyrophenones)

Metoprolol

Name – Lopressor®, Toprol XL®

Class – Beta blocker, beta-1 selective

Pharmacologic Action - Blocks response to beta-adrenergic stimulation; cardio selective for beta-1 receptors at low doses, with little or no effect on beta-2 receptors

Indications - For management of narrow complex tachycardias

Contraindications – Hypersensitivity. *When administered for hypertension or angina:* Sinus bradycardia, second or third degree AV block, cardiogenic shock, sick sinus syndrome (unless permanent pacemaker in place), severe peripheral vascular disease, pheochromocytoma. *When administered for myocardial infarction:* Severe sinus bradycardia with heart rate < 45 beats/minute, systolic BP < 100 mmHg, significant first-degree heart block (PR interval at least 0.24 seconds), moderate-to-severe cardiac failure

WARNING: May cause 1st, 2nd, or 3rd degree AV block

Midazolam

Name – Versed®

Class - Anticonvulsants, other; antianxiety agent; anxiolytics; benzodiazepines

Pharmacologic Action - Binds receptors at several sites within the CNS, including the limbic system and reticular formation; effects may be mediated through gaba-aminobutyric acid (GABA) receptor system; increase in neuronal membrane permeability to chloride ions enhances the inhibitory effects of GABA; the shift in chloride ions causes hyperpolarization (less excitability) and stabilization of the neuronal membrane
Indications – For the management of seizures, uncontrolled shivering in hypothermia, and for the management of agitated or violent patients suffering behavioral emergencies

Contraindications - Documented hypersensitivity, severe respiratory depression, sleep apnea

WARNING: May cause respiratory depression, arrest, or apnea

Morphine Sulfate

Name – MS Contin®, Avinza®, Depodur®, Duramorph®, Infumorph®, Astramorph®, Kadian®, MSO₄

Class – Opioid analgesic

Pharmacologic Action - Narcotic agonist-analgesic of opiate receptors; inhibits ascending pain pathways, thus altering response to pain; produces analgesia, respiratory depression, and sedation; suppresses cough by acting centrally in medulla

Indications – Management of acute pain

Contraindications – Hypersensitivity, paralytic ileus, toxin-mediated diarrhea, respiratory depression, acute or severe bronchial asthma, upper airway obstruction, GI obstruction (extended release), hypercarbia (immediate release tablets/solution), upper airway obstruction (epidural/intrathecal), heart failure due to chronic lung disease, head injuries, brain tumors, deliriums tremens, seizure disorders, during labor when premature birth anticipated (injectable formulation), cardiac arrhythmia, increased intracranial or cerebrospinal pressure, acute alcoholism, use after biliary tract surgery, surgical anastomosis (suppository formulation)

Naloxone

Name – Narcan®, Evzio®

Class – Opioid reversal agent

Pharmacologic Action - Competitive opioid antagonist; synthetic congener of oxymorphone

Indications – Reversal of acute opioid toxicity

Contraindications - Hypersensitivity

WARNING: Administration of naloxone can result in the sudden onset of opiate withdrawal (agitation, tachycardia, pulmonary edema, nausea, vomiting, and, in neonates, seizures)

Nifedipine

Name – Procardia®, Adalat CC®, Nifedical®

Class - Calcium channel blocker

Pharmacologic Action - Calcium-channel blocker; inhibits transmembrane influx of extracellular calcium ions across myocardial and vascular smooth muscle cell membranes without changing serum calcium concentrations; this results in inhibition of cardiac and vascular smooth muscle contraction, thereby dilating main coronary and systemic arteries. Vasodilation with decreased peripheral resistance and increased heart rate

Indications – For the management of high altitude pulmonary edema (HAPE)

Contraindications - Hypersensitivity to nifedipine or other calcium-channel blockers, cardiogenic shock, concomitant administration with strong CYP3A4 inducers (e.g. rifampin, rifabutin,
phenobarbital, phenytoin, carbamazepine, St. John's wort) significantly reduces nifedipine efficacy, Immediate release preparation (sublingually or orally) for urgent or emergent hypertension

Nitrous Oxide

Name – N₂O

Class – Weak inhalational anesthetic

Pharmacologic Action - Its analgesic mechanism of action is described as opioid in nature and may involve a number of spinal neuromodulators. The anxiolytic effect is similar to that of benzodiazepine and may involve gamma aminobutyric (GABA) receptors. The anesthesia mechanism may involve GABA and possibly N-methyl-D-aspartate receptors as well.[6] In general, the effect of nitrous oxide ceases as soon as the inhalation stops, with no residual effect

Indications – Analgesia in the patient who is capable of self-administration of this medication

Contraindications – Significant respiratory compromise, suspected abnormal air-filled cavities (e.g. pneumothorax, bowel obstruction, air embolism)

RELATIVE CONTRAINDICATIONS: History of stroke, hypotension, pregnancy, known cardiac conditions, known vitamin B12 deficiency

Nitroglycerin

Name – Nitrostat®, Nitrolingual Pumpspray®, NitroQuick®

Class – Nitrates, anti-anginal

Pharmacologic Action - Organic nitrate which causes systemic venodilation, decreasing preload. Cellular mechanism: nitrate enters vascular smooth muscle and converted to nitric oxide (NO) leading to activation of cyclic guanosine monophosphate (cGMP) and vasodilation. Relaxes smooth muscle via dose-dependent dilation of arterial and venous beds to reduce both preload and afterload, and myocardial O₂ demand. Also improves coronary collateral circulation. Lower BP, increases heart rate, occasional paradoxical bradycardia

Indications – As an anti-anginal medication for the management of chest pain as well as a reducer of preload for patients suffering from acute pulmonary edema

Contraindications - Hypersensitivity, acute myocardial infarction, severe anemia, recent use of erectile dysfunction medications (sildenafil (Viagra® – within last 24 hours), tadalafil (Cialis® – within last 48 hours), vardenafil (Levitra® – within last 48 hours), or other phosphodiesterase-5 inhibitors). There is potential for dangerous hypotension, narrow angle glaucoma (controversial: may not be clinically significant). Nitrates are contraindicated in the presence of hypotension (SBP < 90 mm Hg or ≥30 mm Hg below baseline), extreme bradycardia (< 50 bpm), tachycardia in the absence of heart failure (> 100 bpm), and right ventricular infarction

Norepinephrine

Name – Levophed®, Levarterenol®

Class – Alpha/beta adrenergic agonist
Pharmacologic Action - Strong beta-1 and alpha-adrenergic effects and moderate beta-2 effects, which increase cardiac output and heart rate, decrease renal perfusion and peripheral vascular resistance, and cause variable BP effects

Indications – As a pressor agent used in the management of shock

Contraindications – Hypersensitivity, hypotension due to blood volume deficit, peripheral vascular thrombosis (except for lifesaving procedures)

RELATIVE CONTRAINDICATIONS: concomitant use with some general anesthetics: chloroform, trichloroethylene, cyclopropane, halothane

WARNING: Norepinephrine is a vesicant and can cause severe tissue damage if extravasation occurs. Do not use in the same IV line as alkaline solutions as these may deactivate it

Olanzapine

Name – Zyprexa®

Class – Antipsychotic, second generation, antimanic agents

Pharmacologic Action - May act through combination of dopamine and serotonin type 2 receptor site antagonism

Indications – For the management of agitated or violent patients suffering a behavioral emergency

Contraindications - Documented hypersensitivity

WARNING: Patients are at risk for severe sedation (including coma) or delirium after each injection and must be observed for at least 3 hours in registered facility with ready access to emergency response services. Patients are at significant risk of severe sedation when olanzapine is administered with benzodiazepines or to patients who have are taking benzodiazepines

Ondansetron

Name – Zofran®, Zofran ODT®, Zuplenz®

Class – Antiemetic, selective 5-HT3 antagonist

Pharmacologic Action - Mechanism not fully characterized; selective 5-HT3 receptor antagonist; binds to 5-HT3 receptors both in periphery and in CNS, with primary effects in GI tract. Has no effect on dopamine receptors and therefore does not cause extrapyramidal symptoms

Indications – For the management of nausea or vomiting

NOTE: EKG monitoring is recommended in patients who have electrolyte abnormalities, CHF, or bradyarrhythmias or who are also receiving other medications that cause QT prolongation

Contraindications – Hypersensitivity, coadministration with apomorphine; combination reported to cause profound hypotension and loss of consciousness

WARNING: May cause dose-dependent QT prolongation, avoid in patients with congenital long QT syndrome

Oxymetazoline

Name – Afrin®, Duramist Plus®, Dristan 12 Hr®, Sinarest 12 Hour®, Vicks Sinus 12 Hour®

Class – Decongestants, intranasal
Pharmacologic Action - Alpha-adrenergic agonist; stimulates alpha-adrenergic receptors and produces vasoconstriction in the arterioles of the nasal mucosa

Indications – For the management of epistaxis in the patient suffering facial trauma

Contraindications - Hypersensitivity

Potassium iodide

Name – Pima Syrup®, SSKI®, ThyroSafe®, ThyroShield®

Class – Antidotes, other; antithyroid agents

Pharmacologic Action – As a thyroid protective agent: Systemically circulating potassium iodide is readily taken up by thyroid gland by sodium/iodide transporter in basal membrane; blocking the thyroid uptake of radioactive isotopes of iodine; concentration gradient of thyroid gland to plasma is 20-50:1

Indications – Indicated during environmental radiation emergency to block uptake of radioactive iodine isotopes in thyroid and reduce risk of thyroid cancer

Contraindications - Iodine sensitivity (although allergy to radiocontrast media, contact dermatitis from iodine-containing antibacterials, allergy to seafood should not be considered evidence of potassium iodide allergy), hyperthyroidism, respiratory failure

Pralidoxime chloride (2-PAM)

Name – Protopam®, 2PAM Antidote®, Pralidoxime Auto Injector®, a component of Mark I® kits and DuoDote®

Class – Cholinergic, toxicity antidote

Pharmacologic Action - Binds to organophosphates and breaks alkyl phosphate-cholinesterase bond to restore activity of acetylcholinesterase

Indications – For the management of toxicity caused by organophosphate insecticides and related nerve gases (e.g. tabun, sarin, soman)

Contraindications – Documented hypersensitivity

Procainamide

Name – Pronestyl®, Procanbid®

Class – Class Ia antidysrhythmic

Pharmacologic Action - Class Ia (membrane stabilizing) antidysrhythmic agent; inhibits recovery after repolarization resulting in decreasing myocardial excitability and conduction velocity. Direct membrane depressant that decreases conduction velocity, prolongs refractoriness, decreases automaticity and reduces repolarization abnormalities

Indications – For the management of stable patients with regular, wide complex tachycardia

Contraindications - Hypersensitivity to procainamide or other ingredients, complete heart block, second or third degree AV block, systemic lupus erythematosus (SLE), torsades de pointes

RELATIVE CONTRAINDICATION: Patients with QT prolongation
Prochlorperazine

Name – Compazine®

Class – Antiemetic agent; antipsychotics, phenothiazine

Pharmacologic Action - Antiemetic: antidopaminergic effect, blocking dopamine receptors in the brain, blocking vagus nerve in GI tract. Antipsychotic: Blocking mesolimbic dopamine receptors, and blocking alpha-adrenergic receptors (D1 and D2) in brain

Indications – For the management of nausea and vomiting

Contraindications - Documented hypersensitivity to phenothiazines, coma, severe CNS depression, concurrent use of large amounts of CNS depressants, poorly controlled seizure disorder, subcortical brain damage, pediatric surgery, children < 2 years or weighing < 9 kg

Sildenafil

Name – Revatio®, Viagra®

Class – Pulmonary artery hypertension therapy, PDE-5 inhibitors; phosphodiesterase-5 enzyme inhibitor

Pharmacologic Action - Inhibits PDE-5, increasing cyclic guanosine monophosphate (cGMP) to allow smooth-muscle relaxation

Indications – As an adjunct to descent in the management of high altitude pulmonary edema (HAPE)

Contraindications - Concomitant use of organic nitrates in any form (e.g. nitroglycerin, isosorbide, illicit “poppers”) either regularly or intermittently, increases risk of severe or potentially fatal hypotension, hypersensitivity

WARNING: Hypotension may occur due to vasodilation

Sodium Bicarbonate

Name - Bicarb

Class – Antidote, other

Pharmacologic Action - Increases blood and urinary pH by releasing a bicarbonate ion, which in turn neutralizes hydrogen ion concentrations

Indications – For the management of cardiac arrest in cases in which either hyperkalemia or tricyclic antidepressant (TCA) overdose are suspected as contributory, QRS prolongation in known or suspected TCA overdose

Contraindications – Documented hypersensitivity, severe pulmonary edema, known alkalosis, hypernatremia, or hypocalcemia

Sodium Nitrite

Name - Nithiodote®

Class – Cyanide antidote

Pharmacologic Action - Nitrites create methemoglobins to bind to cyanide

Indications – For the management of cyanide toxicity

Contraindications – Documented hypersensitivity, suspected or confirmed smoke inhalation and/or carbon monoxide poisoning
WARNING: There is a risk of worsening hypoxia due to methemoglobin formation. In addition, sodium nitrite can cause serious adverse reactions and death from hypotension and methemoglobin formation. Monitor to ensure adequate perfusion and oxygenation during treatment with sodium nitrite.

Sodium Thiosulfate
Name: Nithiodote®
Class: Cyanide antidote
Pharmacologic Action: Thiosulfate is sulfur donor utilized by rhodenase to convert cyanide to less toxic thiocyanate
Indications: For the management of cyanide toxicity
Contraindications: Documented hypersensitivity

Sorbitol
Name: Sorbitol
Class: Laxatives, osmotic
Pharmacologic Action: Polyalcoholic sugar with hyperosmotic effects
Indications: Administered for the management of patients suffering from toxic ingestions
Contraindications: Acute abdominal pain, nausea, vomiting, or other symptoms of appendicitis or undiagnosed abdominal pain, documented hypersensitivity
WARNING: Sorbitol is no longer recommended to be given with activated charcoal

Tadalafil
Name: Cialis®, Adcirca®
Class: Pulmonary artery hypertension therapy, PDE-5 inhibitors; phosphodiesterase-5 enzyme inhibitor
Pharmacologic Action: Pulmonary arterial hypertension (PAH): inhibits PDE-5, increasing cyclic guanosine monophosphate (cGMP) to allow relaxation of pulmonary vascular smooth-muscle cells and vasodilation of pulmonary vasculature
Indications: As an adjunct to descent in the management of high altitude pulmonary edema (HAPE)
Contraindications: Concomitant use of any form of organic nitrates (e.g. nitroglycerin, isosorbide dinitrate, isosorbide mononitrate, illicit "poppers"), either regularly or intermittently; may potentiate hypotensive effect of nitrates. Hypersensitivity, including Stevens-Johnson syndrome and exfoliative dermatitis
WARNING: Hypotension may occur due to vasodilation

Ziprasidone
Name: Geodon®
Class: Second generation antipsychotic
Pharmacologic Action - Acts as antagonist at dopamine-2 and serotonin type 1 and 2 (5HT1D, 5HT2A) receptors; acts as agonist at serotonin 5HT1A receptor; moderately inhibits reuptake of norepinephrine and serotonin; has alpha-blocking and antihistaminic activity

Indications – For the management of agitated or violent patients suffering a behavioral emergency

Contraindications - Documented hypersensitivity, any drugs or conditions that prolong QT interval, recent acute myocardial infarction, uncompensated heart failure
IV. Approved Abbreviations

The following is the Project’s list of approved medical abbreviations used in this document:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>< (≤)</td>
<td>less than (less than or equal to)</td>
</tr>
<tr>
<td>> (≥)</td>
<td>more/greater than (more/greater than or equal to)</td>
</tr>
<tr>
<td>ACS</td>
<td>acute coronary syndrome</td>
</tr>
<tr>
<td>AED</td>
<td>automatic external defibrillator</td>
</tr>
<tr>
<td>A-FIB</td>
<td>atrial fibrillation</td>
</tr>
<tr>
<td>ALS</td>
<td>advanced life support</td>
</tr>
<tr>
<td>AMS</td>
<td>altered mental status</td>
</tr>
<tr>
<td>ASA</td>
<td>aspirin</td>
</tr>
<tr>
<td>AV</td>
<td>atrioventricular</td>
</tr>
<tr>
<td>BLS</td>
<td>basic life support</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>BPM</td>
<td>beats per minute</td>
</tr>
<tr>
<td>BSA</td>
<td>body surface area</td>
</tr>
<tr>
<td>BVM</td>
<td>bag-valve-mask</td>
</tr>
<tr>
<td>CABG</td>
<td>coronary artery bypass graft</td>
</tr>
<tr>
<td>CAD</td>
<td>coronary artery disease</td>
</tr>
<tr>
<td>CC</td>
<td>chief complaint</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CHF</td>
<td>congestive heart failure</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CO</td>
<td>carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>COPD</td>
<td>chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>CP</td>
<td>chest pain</td>
</tr>
<tr>
<td>CPAP</td>
<td>continuous positive airway pressure</td>
</tr>
<tr>
<td>CPR</td>
<td>cardiopulmonary resuscitation</td>
</tr>
<tr>
<td>C-SECTION</td>
<td>caesarean section</td>
</tr>
<tr>
<td>C-SPINE</td>
<td>cervical spine</td>
</tr>
<tr>
<td>CT</td>
<td>cat scan, Cardiac Technician</td>
</tr>
<tr>
<td>CVA</td>
<td>cerebrovascular accident (stroke)</td>
</tr>
<tr>
<td>D5W</td>
<td>5% dextrose in water</td>
</tr>
<tr>
<td>DKA</td>
<td>diabetic ketoacidosis</td>
</tr>
<tr>
<td>DNI</td>
<td>do not intubate</td>
</tr>
<tr>
<td>DNR</td>
<td>do not resuscitate</td>
</tr>
<tr>
<td>DT</td>
<td>delirium tremens</td>
</tr>
<tr>
<td>Dx</td>
<td>diagnosis</td>
</tr>
<tr>
<td>EKG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>EEG</td>
<td>electroencephalogram</td>
</tr>
<tr>
<td>EENT</td>
<td>eye, ear, nose, and throat</td>
</tr>
<tr>
<td>EMS</td>
<td>emergency medical services</td>
</tr>
<tr>
<td>EMT</td>
<td>emergency medical technician</td>
</tr>
<tr>
<td>ET</td>
<td>endotracheal</td>
</tr>
<tr>
<td>ETA</td>
<td>estimated time of arrival</td>
</tr>
<tr>
<td>ETCO₂</td>
<td>end-tidal CO₂</td>
</tr>
<tr>
<td>ETOH</td>
<td>ethanol (alcohol)</td>
</tr>
<tr>
<td>ETT</td>
<td>endotracheal tube</td>
</tr>
<tr>
<td>FBAO</td>
<td>foreign body airway obstruction</td>
</tr>
<tr>
<td>FiO₂</td>
<td>fraction of inspired oxygen</td>
</tr>
<tr>
<td>g</td>
<td>gram(s)</td>
</tr>
<tr>
<td>GI</td>
<td>gastrointestinal</td>
</tr>
<tr>
<td>gtts</td>
<td>drops</td>
</tr>
<tr>
<td>GU</td>
<td>gastrourinary</td>
</tr>
<tr>
<td>GYN</td>
<td>gynecology (gynecological)</td>
</tr>
<tr>
<td>HR</td>
<td>heart rate (hour)</td>
</tr>
<tr>
<td>ICU</td>
<td>intensive care unit</td>
</tr>
<tr>
<td>IM</td>
<td>intramuscular</td>
</tr>
<tr>
<td>IO</td>
<td>intraosseous</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenous</td>
</tr>
<tr>
<td>IVP</td>
<td>intravenous push</td>
</tr>
<tr>
<td>J</td>
<td>joules</td>
</tr>
<tr>
<td>JVD</td>
<td>jugular vein distension</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>KVO</td>
<td>keep vein open</td>
</tr>
<tr>
<td>LPM</td>
<td>liters per minutes</td>
</tr>
<tr>
<td>LR</td>
<td>lactated ringers</td>
</tr>
<tr>
<td>mcg</td>
<td>microgram(s)</td>
</tr>
<tr>
<td>MED</td>
<td>medicine</td>
</tr>
<tr>
<td>mg</td>
<td>milligram(s)</td>
</tr>
<tr>
<td>MI</td>
<td>myocardial infarction (heart attack)</td>
</tr>
<tr>
<td>mmol</td>
<td>millimole</td>
</tr>
<tr>
<td>MOLST</td>
<td>medical orders for life-sustaining treatment</td>
</tr>
<tr>
<td>MS</td>
<td>mental status</td>
</tr>
<tr>
<td>msec</td>
<td>millisecond</td>
</tr>
<tr>
<td>MVC</td>
<td>motor vehicle crash</td>
</tr>
<tr>
<td>N/V</td>
<td>nausea/vomiting</td>
</tr>
<tr>
<td>NC</td>
<td>nasal cannula</td>
</tr>
<tr>
<td>NRB</td>
<td>non-rebreather</td>
</tr>
<tr>
<td>NS</td>
<td>normal saline</td>
</tr>
<tr>
<td>NSR</td>
<td>normal sinus rhythm</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>OB/GYN</td>
<td>obstetrics/gynecology</td>
</tr>
<tr>
<td>O2</td>
<td>oxygen</td>
</tr>
<tr>
<td>P</td>
<td>pulse</td>
</tr>
<tr>
<td>PAC</td>
<td>premature atrial contraction</td>
</tr>
<tr>
<td>PE</td>
<td>pulmonary embolus</td>
</tr>
<tr>
<td>PEA</td>
<td>pulseless electrical activity</td>
</tr>
<tr>
<td>PO</td>
<td>orally</td>
</tr>
<tr>
<td>POLST</td>
<td>physician orders for life-sustaining treatment</td>
</tr>
<tr>
<td>PPE</td>
<td>personal protection equipment</td>
</tr>
<tr>
<td>prn</td>
<td>as needed</td>
</tr>
<tr>
<td>PVC</td>
<td>premature ventricular contraction</td>
</tr>
<tr>
<td>q</td>
<td>every (e.g. q 3-5 minutes)</td>
</tr>
<tr>
<td>RR</td>
<td>respiratory rate</td>
</tr>
<tr>
<td>Rx</td>
<td>medicine</td>
</tr>
<tr>
<td>sat</td>
<td>saturation</td>
</tr>
<tr>
<td>SBP</td>
<td>systolic blood pressure</td>
</tr>
<tr>
<td>SC</td>
<td>subcutaneous</td>
</tr>
<tr>
<td>SL</td>
<td>sublingual</td>
</tr>
<tr>
<td>SOB</td>
<td>shortness of breath</td>
</tr>
<tr>
<td>ST</td>
<td>sinus tachycardia</td>
</tr>
<tr>
<td>SVT</td>
<td>supraventricular tachycardia</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>TBSA</td>
<td>total body surface area</td>
</tr>
<tr>
<td>TCA</td>
<td>tricyclic antidepressants</td>
</tr>
<tr>
<td>TIA</td>
<td>transient ischemic attack</td>
</tr>
<tr>
<td>TID</td>
<td>three times a day</td>
</tr>
<tr>
<td>TKO</td>
<td>to keep open</td>
</tr>
<tr>
<td>VF</td>
<td>ventricular fibrillation</td>
</tr>
<tr>
<td>VS</td>
<td>vital signs</td>
</tr>
<tr>
<td>VT</td>
<td>ventricular tachycardia</td>
</tr>
<tr>
<td>yo</td>
<td>years old (years of age)</td>
</tr>
</tbody>
</table>
V. Burn and Burn Fluid Charts

Burn Size Chart 1

Source: Used with permission, University of Utah Burn Center
Burn Size Chart 2

Percentage of Total Body Surface Area by Age, Anatomic Structure, and Body Habitus

Adult

<table>
<thead>
<tr>
<th>Anatomic structure</th>
<th>Surface area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior head</td>
<td>4.5%</td>
</tr>
<tr>
<td>Posterior head</td>
<td>4.5%</td>
</tr>
<tr>
<td>Anterior torso</td>
<td>18%</td>
</tr>
<tr>
<td>Posterior torso</td>
<td>18%</td>
</tr>
<tr>
<td>Anterior leg, each</td>
<td>9%</td>
</tr>
<tr>
<td>Posterior leg, each</td>
<td>9%</td>
</tr>
<tr>
<td>Anterior arm, each</td>
<td>4.5%</td>
</tr>
<tr>
<td>Posterior arm, each</td>
<td>4.5%</td>
</tr>
<tr>
<td>Genitalia, perineum</td>
<td>1%</td>
</tr>
</tbody>
</table>

Child

<table>
<thead>
<tr>
<th>Anatomic structure</th>
<th>Surface area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior head</td>
<td>9%</td>
</tr>
<tr>
<td>Posterior head</td>
<td>9%</td>
</tr>
<tr>
<td>Anterior torso</td>
<td>18%</td>
</tr>
<tr>
<td>Posterior torso</td>
<td>18%</td>
</tr>
<tr>
<td>Anterior leg, each</td>
<td>6.75%</td>
</tr>
<tr>
<td>Posterior leg, each</td>
<td>6.75%</td>
</tr>
<tr>
<td>Anterior arm, each</td>
<td>4.5%</td>
</tr>
<tr>
<td>Posterior arm, each</td>
<td>4.5%</td>
</tr>
<tr>
<td>Genitalia/perineum</td>
<td>1%</td>
</tr>
</tbody>
</table>

Adult, obese > 80 kg

<table>
<thead>
<tr>
<th>Anatomic structure</th>
<th>Surface area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head and neck</td>
<td>2%</td>
</tr>
<tr>
<td>Anterior torso</td>
<td>25%</td>
</tr>
<tr>
<td>Posterior torso</td>
<td>25%</td>
</tr>
<tr>
<td>Leg, each</td>
<td>20%</td>
</tr>
<tr>
<td>Arm, each</td>
<td>5%</td>
</tr>
<tr>
<td>Genitalia/perineum</td>
<td>0%</td>
</tr>
</tbody>
</table>

Infant < 10 kg

<table>
<thead>
<tr>
<th>Anatomic structure</th>
<th>Surface area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head and neck</td>
<td>20%</td>
</tr>
<tr>
<td>Anterior torso</td>
<td>16%</td>
</tr>
<tr>
<td>Posterior torso</td>
<td>16%</td>
</tr>
<tr>
<td>Leg, each</td>
<td>16%</td>
</tr>
<tr>
<td>Arm, each</td>
<td>8%</td>
</tr>
<tr>
<td>Genitalia/perineum</td>
<td>1%</td>
</tr>
</tbody>
</table>
Parkland Formula

For patients who require fluid resuscitation, consider use of the Parkland formula to calculate the volume of normal saline or Lactated Ringer’s solution that should be administered intravenously to ensure hemodynamic stability.

Volume of Intravenous Fluid required in the first 24 hours (in ml) =
(4 X patient weight in kg) X (Percentage of total body surface area burned)

The first half of the volume of fluid should be administered over the first 8 hours following the burn with the remaining fluid administered over the following 16 hours.

For pediatric patients, a weight-based assessment tool (length-based tape or other system) should be used to provide a more accurate estimate of the patient’s weight. Likewise, the total body surface area (BSA) estimates are different for pediatric patients compared to adults due to larger head and trunk size. For children, the palmar surface of the hand (not including the fingers is approximately equal to 1% BSA. The guidelines listed above will provide assistance during the estimation of the percentage of total body surface area burned for patients of various ages and body habitus.
Burn Injury IV Fluid Rates

Fluid Infusion Rate > 30 KG

Fluid of choice LR/NS, DO NOT use dextrose containing fluids

<table>
<thead>
<tr>
<th>Wt (lbs)</th>
<th>Wt (kg)</th>
<th>% TBSA</th>
<th>/Hr for 1st 8 Hrs of care</th>
<th>60 gtt set, gt/min</th>
<th>20 gtt set, gt/min</th>
<th>15 gtt set, gt/min</th>
<th>10 gtt set, gt/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>30</td>
<td>10</td>
<td>75</td>
<td>75</td>
<td>25.0</td>
<td>18.8</td>
<td>12.5</td>
</tr>
<tr>
<td>66</td>
<td>30</td>
<td>20</td>
<td>150</td>
<td>150</td>
<td>50.0</td>
<td>37.5</td>
<td>25.0</td>
</tr>
<tr>
<td>66</td>
<td>30</td>
<td>30</td>
<td>225</td>
<td>225</td>
<td>75.0</td>
<td>56.3</td>
<td>37.5</td>
</tr>
<tr>
<td>66</td>
<td>30</td>
<td>40</td>
<td>300</td>
<td>300</td>
<td>100.0</td>
<td>75.0</td>
<td>50.0</td>
</tr>
<tr>
<td>66</td>
<td>50</td>
<td>10</td>
<td>375</td>
<td>375</td>
<td>125.0</td>
<td>93.8</td>
<td>62.5</td>
</tr>
<tr>
<td>66</td>
<td>50</td>
<td>20</td>
<td>450</td>
<td>450</td>
<td>150.0</td>
<td>112.6</td>
<td>75.0</td>
</tr>
<tr>
<td>68</td>
<td>40</td>
<td>10</td>
<td>100</td>
<td>100</td>
<td>35.5</td>
<td>25.0</td>
<td>16.7</td>
</tr>
<tr>
<td>68</td>
<td>40</td>
<td>20</td>
<td>200</td>
<td>200</td>
<td>66.7</td>
<td>50.0</td>
<td>33.3</td>
</tr>
<tr>
<td>68</td>
<td>40</td>
<td>30</td>
<td>300</td>
<td>300</td>
<td>100.0</td>
<td>75.0</td>
<td>50.0</td>
</tr>
<tr>
<td>68</td>
<td>40</td>
<td>40</td>
<td>400</td>
<td>400</td>
<td>133.3</td>
<td>100.0</td>
<td>66.7</td>
</tr>
<tr>
<td>68</td>
<td>50</td>
<td>10</td>
<td>500</td>
<td>500</td>
<td>166.7</td>
<td>125.0</td>
<td>83.3</td>
</tr>
<tr>
<td>68</td>
<td>50</td>
<td>20</td>
<td>600</td>
<td>600</td>
<td>200.0</td>
<td>150.0</td>
<td>100.0</td>
</tr>
<tr>
<td>68</td>
<td>50</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>250.0</td>
<td>187.5</td>
<td>125.0</td>
</tr>
<tr>
<td>68</td>
<td>50</td>
<td>40</td>
<td>900</td>
<td>900</td>
<td>300.0</td>
<td>225.0</td>
<td>150.0</td>
</tr>
<tr>
<td>74</td>
<td>35</td>
<td>10</td>
<td>175</td>
<td>175</td>
<td>59.3</td>
<td>43.8</td>
<td>29.2</td>
</tr>
<tr>
<td>74</td>
<td>35</td>
<td>20</td>
<td>250</td>
<td>250</td>
<td>83.3</td>
<td>62.5</td>
<td>41.7</td>
</tr>
<tr>
<td>74</td>
<td>35</td>
<td>30</td>
<td>375</td>
<td>375</td>
<td>125.0</td>
<td>93.8</td>
<td>62.5</td>
</tr>
<tr>
<td>74</td>
<td>35</td>
<td>40</td>
<td>500</td>
<td>500</td>
<td>166.7</td>
<td>125.0</td>
<td>83.3</td>
</tr>
<tr>
<td>74</td>
<td>40</td>
<td>10</td>
<td>525</td>
<td>525</td>
<td>175.0</td>
<td>131.3</td>
<td>87.5</td>
</tr>
<tr>
<td>74</td>
<td>40</td>
<td>20</td>
<td>625</td>
<td>625</td>
<td>208.3</td>
<td>156.3</td>
<td>104.2</td>
</tr>
<tr>
<td>74</td>
<td>40</td>
<td>30</td>
<td>750</td>
<td>750</td>
<td>250.0</td>
<td>187.5</td>
<td>125.0</td>
</tr>
<tr>
<td>74</td>
<td>40</td>
<td>40</td>
<td>900</td>
<td>900</td>
<td>300.0</td>
<td>225.0</td>
<td>150.0</td>
</tr>
<tr>
<td>74</td>
<td>50</td>
<td>10</td>
<td>875</td>
<td>875</td>
<td>291.7</td>
<td>218.8</td>
<td>145.8</td>
</tr>
<tr>
<td>74</td>
<td>50</td>
<td>20</td>
<td>1050</td>
<td>1050</td>
<td>350.0</td>
<td>262.6</td>
<td>175.0</td>
</tr>
<tr>
<td>80</td>
<td>36</td>
<td>10</td>
<td>200</td>
<td>200</td>
<td>66.7</td>
<td>50.0</td>
<td>33.3</td>
</tr>
<tr>
<td>80</td>
<td>36</td>
<td>20</td>
<td>400</td>
<td>400</td>
<td>133.3</td>
<td>100.0</td>
<td>66.7</td>
</tr>
<tr>
<td>80</td>
<td>36</td>
<td>30</td>
<td>600</td>
<td>600</td>
<td>200.0</td>
<td>150.0</td>
<td>100.0</td>
</tr>
<tr>
<td>80</td>
<td>36</td>
<td>40</td>
<td>800</td>
<td>800</td>
<td>266.7</td>
<td>200.0</td>
<td>133.3</td>
</tr>
<tr>
<td>80</td>
<td>50</td>
<td>10</td>
<td>1000</td>
<td>1000</td>
<td>333.3</td>
<td>250.0</td>
<td>166.7</td>
</tr>
<tr>
<td>80</td>
<td>50</td>
<td>20</td>
<td>1200</td>
<td>1200</td>
<td>400.0</td>
<td>300.0</td>
<td>200.0</td>
</tr>
<tr>
<td>80</td>
<td>50</td>
<td>30</td>
<td>1350</td>
<td>1350</td>
<td>450.0</td>
<td>337.5</td>
<td>225.0</td>
</tr>
<tr>
<td>80</td>
<td>50</td>
<td>40</td>
<td>1500</td>
<td>1500</td>
<td>500.0</td>
<td>375.0</td>
<td>250.0</td>
</tr>
<tr>
<td>100</td>
<td>45</td>
<td>10</td>
<td>225</td>
<td>225</td>
<td>75.0</td>
<td>56.3</td>
<td>37.5</td>
</tr>
<tr>
<td>100</td>
<td>45</td>
<td>20</td>
<td>450</td>
<td>450</td>
<td>150.0</td>
<td>112.5</td>
<td>75.0</td>
</tr>
<tr>
<td>100</td>
<td>45</td>
<td>30</td>
<td>675</td>
<td>675</td>
<td>225.0</td>
<td>168.8</td>
<td>112.5</td>
</tr>
<tr>
<td>100</td>
<td>45</td>
<td>40</td>
<td>900</td>
<td>900</td>
<td>300.0</td>
<td>225.0</td>
<td>150.0</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>10</td>
<td>1125</td>
<td>1125</td>
<td>375.0</td>
<td>281.3</td>
<td>187.5</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>20</td>
<td>1350</td>
<td>1350</td>
<td>450.0</td>
<td>337.5</td>
<td>225.0</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>30</td>
<td>1500</td>
<td>1500</td>
<td>500.0</td>
<td>375.0</td>
<td>250.0</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>40</td>
<td>1650</td>
<td>1650</td>
<td>550.0</td>
<td>412.4</td>
<td>275.0</td>
</tr>
<tr>
<td>120</td>
<td>54</td>
<td>10</td>
<td>300</td>
<td>300</td>
<td>99.9</td>
<td>74.9</td>
<td>50.1</td>
</tr>
<tr>
<td>120</td>
<td>54</td>
<td>20</td>
<td>600</td>
<td>600</td>
<td>200.1</td>
<td>150.0</td>
<td>99.9</td>
</tr>
<tr>
<td>120</td>
<td>54</td>
<td>30</td>
<td>825</td>
<td>825</td>
<td>300.0</td>
<td>224.9</td>
<td>150.0</td>
</tr>
<tr>
<td>120</td>
<td>54</td>
<td>40</td>
<td>1000</td>
<td>1000</td>
<td>399.9</td>
<td>300.0</td>
<td>201.0</td>
</tr>
<tr>
<td>120</td>
<td>54</td>
<td>50</td>
<td>1500</td>
<td>1500</td>
<td>600.1</td>
<td>452.8</td>
<td>300.0</td>
</tr>
</tbody>
</table>

Patients with traumatic injuries may require additional fluids.

All Rights Reserved V.11-14

283
Burn Injury IV Fluid Rates
Fluid Infusion Rate < 30 KG

Used with permission, University of Utah Burn Center. https://crisisstandardsofcare.utah.edu.
All Rights Reserved V.11-14
284


VI. Neurologic Status Assessment

Neurologic status assessment involves establishing a baseline and then trending any change in patient neurologic status. Glasgow Coma Score (GCS) is frequently used, but there are often errors in applying and calculating this score. With this in consideration, Glasgow Coma Score may not be more valid than a simpler field approach. Either AVPU (Alert, Verbal, Painful, Unresponsive – see below) or only the motor component of the GCS may more effectively serve in this capacity.

Glasgow Coma Score

<table>
<thead>
<tr>
<th>Points</th>
<th>Pediatric</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>No eye opening</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Eye opening to pain</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Eye opening to verbal</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Eyes open spontaneously</td>
<td></td>
</tr>
<tr>
<td>Verbal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>No vocalization</td>
<td>No verbal response</td>
</tr>
<tr>
<td>2</td>
<td>Inconsolable, agitated</td>
<td>Incomprehensible sounds</td>
</tr>
<tr>
<td>3</td>
<td>Inconsistently consolable, moaning</td>
<td>Inappropriate words</td>
</tr>
<tr>
<td>4</td>
<td>Cries but consolable, inappropriate interactions</td>
<td>Confused</td>
</tr>
<tr>
<td>5</td>
<td>Smiles, oriented to sounds, follows objects, interacts</td>
<td>Oriented</td>
</tr>
<tr>
<td>Motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>No motor response</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Extension to pain</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Flexion to pain</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Withdraws from pain</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Localizes pain</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Obeys commands</td>
<td></td>
</tr>
</tbody>
</table>

AVPU

A: The patients is alert

V: The patient responds to verbal stimulus

P: The patient responds to painful stimulus

U: The patient is completely unresponsive
VII. Normal Vital Signs

<table>
<thead>
<tr>
<th>Age</th>
<th>Heart Rate</th>
<th>Resp Rate</th>
<th>Systolic BP</th>
<th>Temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 d – 1 m</td>
<td>> 205</td>
<td>> 60</td>
<td>< 60</td>
<td><36 or >38</td>
</tr>
<tr>
<td>≥ 1 m - 3 m</td>
<td>> 205</td>
<td>> 60</td>
<td>< 70</td>
<td><36 or >38</td>
</tr>
<tr>
<td>≥ 3 m - 1 r</td>
<td>> 190</td>
<td>> 60</td>
<td>< 70</td>
<td><36 or >38.5</td>
</tr>
<tr>
<td>≥ 1 y - 2 y</td>
<td>> 190</td>
<td>> 40</td>
<td>< 70 + (age in yr x 2)</td>
<td><36 or >38.5</td>
</tr>
<tr>
<td>≥ 2 y - 4 y</td>
<td>> 140</td>
<td>> 40</td>
<td>< 70 + (age in yr x 2)</td>
<td><36 or >38.5</td>
</tr>
<tr>
<td>≥ 4 y - 6 y</td>
<td>> 140</td>
<td>> 34</td>
<td>< 70 + (age in yr x 2)</td>
<td><36 or >38.5</td>
</tr>
<tr>
<td>≥ 6 y - 10 y</td>
<td>> 140</td>
<td>> 30</td>
<td>< 70 + (age in yr x 2)</td>
<td><36 or >38.5</td>
</tr>
<tr>
<td>≥ 10 y - 13 y</td>
<td>> 100</td>
<td>> 30</td>
<td>< 90</td>
<td><36 or >38.5</td>
</tr>
<tr>
<td>> 13 y</td>
<td>> 100</td>
<td>>16</td>
<td>< 90</td>
<td><36 or >38.5</td>
</tr>
</tbody>
</table>
VIII. Evidence-based Guidelines - Grade Methodology

An Overview of GRADE Methodology

Although engagement in quality EMS research has increased significantly, the demand for evidence-based quality prehospital research continues to exceed its availability. The need for evidence-based prehospital patient care protocols was clearly recognized by the Institute of Medicine of the National Academies and clearly stated in 2007 in The Future of Emergency Care: Emergency Medical Services at the Crossroads.

The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology is a transparent process where the available research is reviewed and assessed by a panel of subject matter experts. Following this thorough review process, the available research is reviewed and graded for its validity based upon the assessment of the workgroup, and an evidence-based guideline (EBG) is developed based upon the outcome of the workgroup.

The Federal Interagency Committee on Emergency Medical Services (FICEMS) and the National EMS Advisory Council (NEMSAC) approved a National Prehospital Evidence-based Guideline Model Process for the development, implementation, and evaluation of evidence-based guidelines. This Model Process recommends the use of the GRADE methodology for the guideline development tool. The six process steps of the GRADE EBG development tool are:

- Assemble the expert panel and provide GRADE training
- Define the EBG content area and establish the specific clinical questions to address in patient, intervention, comparison, and outcome (PICO) format
- Prioritize outcomes to facilitate systematic literature searches
- Create GRADE tables (or evidence profiles) for each PICO question
- Vet and endorse GRADE evidence tables and draft recommendations
- Synthesize recommendations into an EMS protocol and visual algorithm

The current evidence-based guidelines cited in this document were created for and released by NHTSA; however, the GRADE methodology is not proprietary to NHTSA or any other organization. Local, regional, and state EMS agencies and EMS systems are encouraged to support the ongoing need for quality prehospital care, improved patient outcome, and the growing demand for EBGs for EMS.

References: